Publications by authors named "Rachel K Morford"

Cell migration is strongly influenced by the organization of the surrounding 3-D extracellular matrix. In particular, within fibrous solid tumors, carcinoma cell invasion may be directed by patterns of aligned collagen in the extra-epithelial space. Thus, studying the interactions of heterogeneous populations of cancer cells that include the stem/progenitor-like cancer stem cell subpopulation and aligned collagen networks is critical to our understanding of carcinoma dissemination.

View Article and Find Full Text PDF

Carcinoma cells frequently expand and invade from a confined lesion, or multicellular clusters, into and through the stroma on the path to metastasis, often with an efficiency dictated by the architecture and composition of the microenvironment. Specifically, in desmoplastic carcinomas such as those of the breast, aligned collagen tracks provide contact guidance cues for directed cancer cell invasion. Yet, the evolving dynamics of this process of invasion remains poorly understood, in part due to difficulties in continuously capturing both spatial and temporal heterogeneity and progression to invasion in experimental systems.

View Article and Find Full Text PDF

Directed cell migration by contact guidance in aligned collagenous extracellular matrix (ECM) is a critical enabler of breast cancer dissemination. The mechanisms of this process are poorly understood, particularly in 3D, in part because of the lack of efficient methods to generate aligned collagen matrices. To address this technological gap, we propose a simple method to align collagen gels using guided cellular compaction.

View Article and Find Full Text PDF