Publications by authors named "Rachel Jurd"

Alterations in the efficacy of neuronal inhibition mediated by GABAA receptors (GABAARs) containing β3 subunits are continually implicated in autism spectrum disorders (ASDs). In vitro, the plasma membrane stability of GABAARs is potentiated via phosphorylation of serine residues 408 and 409 (S408/9) in the β3 subunit, an effect that is mimicked by their mutation to alanines. To assess if modifications in β3 subunit expression contribute to ASDs, we have created a mouse in which S408/9 have been mutated to alanines (S408/9A).

View Article and Find Full Text PDF

The current study examined psychosocial correlates of medication adherence in a socioeconomically and racially diverse sample of patients with epilepsy. Fifty-five patients with epilepsy completed standardized self-report questionnaires measuring depression, stress, social support, and medication and illness beliefs. Antiepileptic drug (AED) adherence was measured using the 8-item Morisky Medication Adherence Scale 36% reported poor adherence.

View Article and Find Full Text PDF

Brain-derived neurotrophic factor (BDNF) is a potent regulator of neuronal activity, neurogenesis, and depressive-like behaviors; however, downstream effectors by which BDNF exerts these varying actions remain to be determined. Here we reveal that BDNF induces long-lasting enhancements in the efficacy of synaptic inhibition by stabilizing γ2 subunit-containing GABA(A) receptors (GABA(A)Rs) at the cell surface, leading to persistent reductions in neuronal excitability. This effect is dependent upon enhanced phosphorylation of tyrosines 365 and 367 (Y365/7) in the GABA(A)R γ2 subunit as revealed using mice in which these residues have been mutated to phenyalanines (Y365/7F).

View Article and Find Full Text PDF

Intravenous anesthetics exert a component of their actions via potentiating inhibitory neurotransmission mediated by γ-aminobutyric type-A receptors (GABAARs). Phasic and tonic inhibition is mediated by distinct populations of GABAARs, with the majority of phasic inhibition by subtypes composed of α1-3βγ2 subunits, whereas tonic inhibition is dependent on subtypes assembled from α4-6βδ subunits. To explore the contribution that these distinct forms of inhibition play in mediating intravenous anesthesia, we have used mice in which tyrosine residues 365/7 within the γ2 subunit are mutated to phenyalanines (Y365/7F).

View Article and Find Full Text PDF

The activity of the neuronal-specific potassium chloride co-transporter KCC2 allows neurons to maintain low intracellular Cl(-) concentrations. These low Cl(-) concentrations are critical in mediating fast synaptic inhibition upon the activation of Cl(-)-permeable ligand-gated ion channels such as type A gamma-aminobutyric acid receptors (GABA(A)Rs). Deficits in KCC2 functional expression thus play central roles in the etiology of epilepsy and ischemia.

View Article and Find Full Text PDF

GABA(A) receptors mediate the majority of fast synaptic inhibition in the mammalian brain. Mechanisms that regulate GABA(A) function are thus of critical importance in modulating overall synaptic inhibition. Phosphorylation of GABA(A) receptor subunits is one such mechanism that leads to the dynamic modulation of GABA(A) receptor function.

View Article and Find Full Text PDF

Background: The anesthetic properties of etomidate are largely mediated by gamma-aminobutyric acid type A receptors. There is evidence for the existence of gamma-aminobutyric acid type A receptor subtypes in the brain, which respond to small concentrations of etomidate. After awakening from anesthesia, these subtypes are expected to cause cognitive dysfunction for a yet unknown period of time.

View Article and Find Full Text PDF

Phosphorylation of GABA(A) receptors is an important mechanism for dynamically modulating inhibitory synaptic function in the mammalian brain. In particular, phosphorylation of tyrosine residues 365 and 367 (Y365/7) within the GABA(A) receptor gamma2 subunit negatively regulates the endocytosis of GABA(A) receptors and enhances synaptic inhibition. Here we show that Fyn, a Src family kinase (SFK), interacts with the gamma2 subunit in a phosphorylation-dependent manner.

View Article and Find Full Text PDF

Fast synaptic inhibition in the brain is largely mediated by gamma-aminobutyric acid receptors (GABA(A)R). While the pharmacological manipulation of GABA(A)R function by therapeutic agents, such as benzodiazepines can have profound effects on neuronal excitation and behavior, the endogenous mechanisms neurons use to regulate the efficacy of synaptic inhibition and their impact on behavior remains poorly understood. To address this issue, we created a knock-in mouse in which tyrosine phosphorylation of the GABA(A)Rs gamma2 subunit, a posttranslational modification that is critical for their functional modulation, has been ablated.

View Article and Find Full Text PDF

Etomidate and propofol have clearly distinguishable effects on the central nervous system. However, studies in knock-in mice provided evidence that these agents produce anesthesia via largely overlapping molecular targets, namely GABA(A) receptors containing beta3 subunits. Here the authors address the question as to whether etomidate and propofol are targeting different subpopulations of beta3 subunit containing GABA(A) receptors.

View Article and Find Full Text PDF

The GABA(A) receptor has been identified as the single most important target for the intravenous anesthetic propofol. How effects at this receptor are then translated into a loss of consciousness, however, remains a mystery. One possibility is that anesthetics act on natural sleep pathways.

View Article and Find Full Text PDF

Alcohol has subjective and behavioral effects at the pharmacological levels typically reached during the consumption of one or two alcoholic drinks. Here we provide evidence that an alpha4-subunit-containing GABA(A) receptor contributes to the consumption of low-to-moderate levels of alcohol. Using viral-mediated RNA interference (RNAi), we found that reduced expression of the alpha4 subunit in the nucleus accumbens (NAc) shell of rats decreased their free consumption of and preference for alcohol.

View Article and Find Full Text PDF

GABA (gamma-aminobutyric acid) type A receptors (GABA(A)Rs) mediate most fast synaptic inhibition in the mammalian brain, controlling activity at both the network and the cellular levels. The diverse functions of GABA in the CNS are matched not just by the heterogeneity of GABA(A)Rs, but also by the complex trafficking mechanisms and protein-protein interactions that generate and maintain an appropriate receptor cell-surface localization. In this Review, we discuss recent progress in our understanding of the dynamic regulation of GABA(A)R composition, trafficking to and from the neuronal surface, and lateral movement of receptors between synaptic and extrasynaptic locations.

View Article and Find Full Text PDF

The N-methyl-D-aspartate receptor (NMDAR) plays a critical role in synaptic plasticity. Post-translational modifications of NMDARs, such as phosphorylation, alter both the activity and trafficking properties of NMDARs. Ubiquitination is increasingly being recognized as another post-translational modification that can alter synaptic protein composition and function.

View Article and Find Full Text PDF

Intravenous GABAergic anesthetics are potent hypnotics but are rather ineffective in depressing movements. Immobility is mediated, in part, by the ventral horn of the spinal cord. We hypothesized that the efficacy of these anesthetics in producing immobility is compromised by the activation of GABA(A) receptors located presynaptically, which modulate GABA release onto neurons in the ventral horn.

View Article and Find Full Text PDF

Gamma-aminobutyric acid-A (GABAA) receptors are ligand-gated ion channels comprised of subunits from several classes (alpha, beta, gamma, delta). Recent studies have clearly demonstrated that the functional properties of GABAA receptors are altered following chronic ethanol administration that could provide the molecular basis for the previously proposed role of these receptors in ethanol tolerance and dependence. Because the subunit composition of GABAA receptors determines receptor pharmacology, the present study was devoted to assess if the behavioral sensitivity after acute and chronic ethanol exposure depends on beta3-containing GABAA receptors.

View Article and Find Full Text PDF

Background: Agents belonging to diverse chemical classes are used clinically as general anesthetics. The molecular targets mediating their actions are however still only poorly defined. Both chemical diversity and substantial differences in the clinical actions of general anesthetics suggest that general anesthetic agents may have distinct pharmacological targets.

View Article and Find Full Text PDF

Barbiturates were introduced into medical practice in 1934. They are widely used today as general anesthetics. Although in vitro studies revealed that the activity of a variety of ligand-gated channels is modulated by barbiturates, the target(s) mediating the anesthetic actions of barbiturates in vivo are unknown.

View Article and Find Full Text PDF

Background: At concentrations close to 1 minimum alveolar concentration (MAC)-immobility, volatile anesthetics display blocking and prolonging effects on gamma-aminobutyric acid type A receptor-mediated postsynaptic currents. It has been proposed that distinct molecular mechanisms underlie these dual actions. The authors investigated whether the blocking or the prolonging effect of enflurane is altered by a point mutation (N265M) in the beta3 subunit of the gamma-aminobutyric acid type A receptor.

View Article and Find Full Text PDF

Drug addiction is a chronic disease characterized by compulsive drug use despite the severe negative consequences associated with it. Repeated exposure to drugs of abuse results in molecular adaptations in neuronal signaling pathways, which eventually manifest in the complex behavioral alterations that characterize addiction. These include tolerance, sensitization, dependence, drug craving, and relapse.

View Article and Find Full Text PDF

General anesthetics are among the most widely used and important therapeutic agents. The molecular targets mediating different endpoints of the anesthetic state in vivo are currently largely unknown. The analysis of mice carrying point mutations in neurotransmitter receptor subunits is a powerful tool to assess the contribution of the respective receptor subtype to the pharmacological actions of clinically used general anesthetics.

View Article and Find Full Text PDF

Unlabelled: Mice bearing an N265M point mutation in the gamma-aminobutyric acid (GABA)(A) receptor beta3 subunit resist various anesthetic effects of propofol and etomidate. They also require a 16% larger concentration of enflurane and a 21% larger concentration of halothane to abolish the withdrawal reflex than do wild-type mice. Using a Pavlovian test, we measured whether this mutation increased the concentration of isoflurane required to impair learning and memory relative to wild-type mice.

View Article and Find Full Text PDF