Brain α2-containing GABA receptors play a critical role in the modulation of anxiety- and fear-like behavior. However, it is unknown whether these receptors also play a role in modulating resilience to chronic stress, and in which brain areas and cell types such an effect would be mediated. We evaluated the role of α2-containing GABA receptors following chronic social defeat stress using male mice deficient in the α2 subunit globally or conditionally in dopamine D1- or D2-receptor-expressing neurons, e.
View Article and Find Full Text PDFBoth schizophrenia (SZ) and substance abuse (SA) exhibit significant heritability. Moreover, N-methyl-d-aspartate receptors (NMDARs) have been implicated in the pathophysiology of both SZ and SA. We hypothesize that the high prevalence of comorbid SA in SZ is due to dysfunction of NMDARs caused by shared risk genes.
View Article and Find Full Text PDFPituitary adenylate cyclase-activating polypeptide (PACAP) is implicated in stress regulation and learning and memory. PACAP has neuromodulatory actions on brain structures within the limbic system that could contribute to its acute and persistent effects in animal models of stress and anxiety-like behavior. Here, male Sprague-Dawley rats were implanted with intracerebroventricular (ICV) cannula for infusion of PACAP-38 (0.
View Article and Find Full Text PDFBackground: Severe or prolonged stress can trigger psychiatric illnesses including mood and anxiety disorders. Recent work indicates that pituitary adenylate cyclase-activating polypeptide (PACAP) plays an important role in regulating stress effects. In rodents, exogenous PACAP administration can produce persistent elevations in the acoustic startle response, which may reflect anxiety-like signs including hypervigilance.
View Article and Find Full Text PDFAccumulating evidence indicates that kappa-opioid receptors (KORs) and their endogenous ligand, dynorphin (DYN), can play important roles in regulating the effects of stress. Here, we examined the role of KOR systems in the molecular and behavioral effects of acute (1-day) and chronic (10-day) social defeat stress (SDS) in mice. We found that acute SDS increased DYN mRNA levels within the nucleus accumbens, a key element of brain dopamine (DA) systems.
View Article and Find Full Text PDFBackground: Chronic social defeat stress (CSDS) produces persistent behavioral adaptations in mice. In many behavioral assays, it can be difficult to determine if these adaptations reflect core signs of depression. We designed studies to characterize the effects of CSDS on sensitivity to reward because anhedonia (reduced sensitivity to reward) is a defining characteristic of depressive disorders in humans.
View Article and Find Full Text PDFMuch research has focused on how the amygdala processes individual affects, yet little is known about how multiple types of positive and negative affects are encoded relative to one another at the single-cell level. In particular, it is unclear whether different negative affects, such as fear and disgust, are encoded more similarly than negative and positive affects, such as fear and pleasure. Here we test the hypothesis that the basolateral nucleus of the amygdala (BLA), a region known to be important for learned fear and other affects, encodes affective valence by comparing neuronal activity in the BLA during a conditioned fear stimulus (fear CS) with activity during intraoral delivery of an aversive fluid that induces a disgust response and a rewarding fluid that induces a hedonic response.
View Article and Find Full Text PDFIt has been proposed that long-term declarative memories are ultimately stored through interactions between the hippocampal memory system and the neocortical association areas that initially processed the to-be-stored information. One association neocortex, the orbitofrontal cortex (OFC) is strongly and reciprocally connected with the hippocampal memory system and plays an important role in odor recognition memory in rats. We will report data from two studies: one that examined the firing of neurons in a task dependent on the parahippocampal region (PHR; including the perirhinal, postrhinal, and entrorhinal cortices), and one examined the firing of OFC neurons performing a task that is presumably dependent on the hippocampus.
View Article and Find Full Text PDF