Publications by authors named "Rachel Hegab"

The long-term exposure of low levels of the fungicide, 2-phenylphenol (2-PP), to the environment presents a hazard to human and aquatic health. The cost and difficulty in large-scale production limit the use of existing sensors to detect 2-PP for applications such as personal protection and persistent environmental monitoring of large areas. While advances have been made in using whole cells as biosensors for specific chemical detection, a whole-cell biosensor system with robust biocontainment for field deployment and a strong visual reporter for readouts in the deployed environment has yet to be realized.

View Article and Find Full Text PDF

Despite advancements in tissue engineering, the methods used to generate three-dimensional (3D)models for rapid screening and characterization studies remain time and labor intensive. Bioprinting offers an opportunity to offset these limitations by providing a scalable, high-throughput method with precise control over biomaterial scaffold and cellular deposition. However, the process of formulating bioinks can be complex in terms of balancing the mechanical integrity of a bioscaffold and viability of cells.

View Article and Find Full Text PDF

Three-dimensional (3 D) hydrogel scaffolds are an attractive option for tissue regeneration applications because they allow for cell migration, fluid exchange, and can be synthesized to closely mimic the physical properties of the extracellular matrix environment. The material properties of hydrogels play a vital role in cellular migration and differentiation. In light of this, in-depth understanding of material properties is required before such scaffolds can be used to study their influence on cells.

View Article and Find Full Text PDF

The persistence of drug resistant cell populations following chemotherapeutic treatment is a significant challenge in the clinical management of cancer. Resistant subpopulations arise via both cell intrinsic and extrinsic mechanisms. Extrinsic factors in the microenvironment, including neighboring cells, glycosaminoglycans, and fibrous proteins impact therapy response.

View Article and Find Full Text PDF