Publications by authors named "Rachel Hardisty-Hughes"

Otitis media (OM), inflammation of the middle ear (ME), is a common cause of conductive hearing impairment. Despite the importance of the disease, the aetiology of chronic and recurrent forms of middle ear inflammatory disease remains poorly understood. Studies of the human population suggest that there is a significant genetic component predisposing to the development of chronic OM, although the underlying genes are largely unknown.

View Article and Find Full Text PDF

Unlabelled: The Neuroplastin gene encodes two synapse-enriched protein isoforms, Np55 and Np65, which are transmembrane glycoproteins that regulate several cellular processes, including the genesis, maintenance, and plasticity of synapses. We found that an absence of Np65 causes early-onset sensorineural hearing loss and prevented the normal synaptogenesis in inner hair cells (IHCs) in the newly identified mouse mutant pitch. In wild-type mice, Np65 is strongly upregulated in the cochlea from around postnatal day 12 (P12), which corresponds to the onset of hearing.

View Article and Find Full Text PDF

Mitogen-activated protein kinase, MAP3K1, plays an important role in a number of cellular processes, including epithelial migration during eye organogenesis. In addition, studies in keratinocytes indicate that MAP3K1 signalling through JNK is important for actin stress fibre formation and cell migration. However, MAP3K1 can also act independently of JNK in the regulation of cell proliferation and apoptosis.

View Article and Find Full Text PDF

In hair cells of the inner ear, sound or head movement increases tension in fine filaments termed tip links, which in turn convey force to mechanosensitive ion channels to open them. Tip links are formed by a tetramer of two cadherin proteins: protocadherin 15 (PCDH15) and cadherin 23 (CDH23), which have 11 and 27 extracellular cadherin (EC) repeats, respectively. Mutations in either protein cause inner ear disorders in mice and humans.

View Article and Find Full Text PDF

The recessive mouse mutant headbobber (hb) displays the characteristic behavioural traits associated with vestibular defects including headbobbing, circling and deafness. This mutation was caused by the insertion of a transgene into distal chromosome 7 affecting expression of native genes. We show that the inner ear of hb/hb mutants lacks semicircular canals and cristae, and the saccule and utricle are fused together in a single utriculosaccular sac.

View Article and Find Full Text PDF

Progeny from the Harwell N-ethyl-N-nitrosourea (ENU) recessive mutagenesis screen were assessed for auditory defects. A pedigree was identified with multiple progeny lacking response to a clickbox test. Auditory brainstem response (ABR) analysis showed that homozygous mutant mice were profoundly deaf and the line was named melody.

View Article and Find Full Text PDF

We describe a protocol for the production of mice carrying N-ethyl-N-nitrosourea (ENU) mutations and their screening for auditory and vestibular phenotypes. In comparison with the procedures describing individual phenotyping tests, this protocol integrates a set of tests for the comprehensive determination of the causes of hearing loss. It comprises a primary screen of relatively simple auditory and vestibular tests.

View Article and Find Full Text PDF

Background: Jeff is a dominant mouse mutant displaying chronic otitis media. The gene underlying Jeff is Fbxo11, a member of the large F-box family, which are specificity factors for the SCF E3 ubiquitin ligase complex. Jeff homozygotes die shortly after birth displaying a number of developmental abnormalities including cleft palate and eyes open at birth.

View Article and Find Full Text PDF

Mouse genetics has made crucial contributions to the understanding of the molecular mechanisms of hearing. With the help of a plethora of mouse mutants, many of the key genes that are involved in the development and functioning of the auditory system have been elucidated. Mouse mutants continue to shed light on the genetic and physiological bases of human hearing impairment, including both early- and late-onset deafness.

View Article and Find Full Text PDF

Otitis media (OM), inflammation of the middle ear, is the most common cause of hearing impairment and surgery in children. Recurrent and chronic forms of OM are known to have a strong genetic component, but nothing is known of the underlying genes involved in the human population. We have previously identified a novel semi-dominant mouse mutant, Jeff, in which the heterozygotes develop chronic suppurative OM (Hardisty, R.

View Article and Find Full Text PDF

Otitis media (OM), inflammation of the middle ear, remains the most common cause of hearing impairment in children. It is also the most common cause of surgery in children in the developed world. There is evidence from studies of the human population and mouse models that there is a significant genetic component predisposing to OM, yet nothing is known about the underlying genetic pathways involved in humans.

View Article and Find Full Text PDF

The pathogenesis of otitis media (OM) is multifactorial and includes infection, anatomical factors, immunologic status, genetic predisposition, and environmental factors. OM remains the most common cause of hearing impairment in childhood. Genetic predisposition is increasingly recognized as an important factor.

View Article and Find Full Text PDF

Objective: The FBXO11 gene is the human homologue of the gene mutated in the novel deaf mouse mutant jeff (Jf), a single gene model of otitis media. We have evaluated single nucleotide polymorphisms (SNPs) in the FBXO11 gene for association with chronic otitis media with effusion/recurrent otitis media (COME/ROM).

Design: A total of 13 SNPs were genotyped across the 98.

View Article and Find Full Text PDF