Publications by authors named "Rachel Hanley"

Despite increasing knowledge about small extracellular vesicle (sEV) composition and functions in cell-cell communication, the mechanism behind their biogenesis remains unclear. Here, we reveal for the first time that sEV biogenesis and release into the microenvironment are tightly connected with another important organelle, Lipid Droplets (LDs). The correlation was observed in several human cancer cell lines as well as patient-derived colorectal cancer stem cells (CR-CSCs).

View Article and Find Full Text PDF

Background: Cancer radiation treatments have seen substantial advancements, yet the biomolecular mechanisms underlying cancer cell radioresistance continue to elude full understanding. The effectiveness of radiation on cancer is hindered by various factors, such as oxygen concentrations within tumors, cells' ability to repair DNA damage and metabolic changes. Moreover, the initial and radiation-induced cell cycle profiles can significantly influence radiotherapy responses as radiation sensitivity fluctuates across different cell cycle stages.

View Article and Find Full Text PDF

Opioid use results in thousands of overdose deaths each year. To address this crisis, we need a better understanding of the neurobiological mechanisms that drive opioid abuse. The noninvasive imaging tools positron emission tomography (PET), functional magnetic resonance imaging (fMRI), and manganese-enhanced magnetic resonance imaging (MEMRI) can be used to identify how brain activity responds to acute opioid exposure and adapts to chronic drug treatment.

View Article and Find Full Text PDF

Background: Solid tumors are often riddled with hypoxic areas, which develops as a result of high proliferation. Cancer cells willingly adapt and thrive in hypoxia by activating complex changes which contributes to survival and enhanced resistance to treatments, such as photon radiation. Photon radiation primarily relies on oxygen for the production of reactive oxygen species to induce DNA damage.

View Article and Find Full Text PDF
Article Synopsis
  • - The proposed mechanism suggests that cancer cells can lower nuclear oxygen levels by manipulating cholesterol levels in their membranes, which affects oxygen diffusion without relying on hypoxic conditions, potentially aiding resistance to chemotherapy and radiotherapy.
  • - High cholesterol content in cell membranes leads to more rigid structures, impeding oxygen diffusion and enabling cells to consume oxygen more rapidly than it can be replenished, thereby decreasing nuclear oxygen concentration.
  • - Experimental analysis of bladder cancer cells during the cell cycle uses gene analysis and radiation response tests to demonstrate a correlation between cellular and nuclear oxygen levels, showing that oxygen presence significantly influences DNA damage from radiation.
View Article and Find Full Text PDF

Breast cancer is the most frequent cancer in women worldwide and late diagnosis often adversely affects the prognosis of the disease. Radiotherapy is commonly used to treat breast cancer, reducing the risk of recurrence after surgery. However, the eradication of radioresistant cancer cells, including cancer stem cells, remains the main challenge of radiotherapy.

View Article and Find Full Text PDF

Although much progress has been made in cancer treatment, the molecular mechanisms underlying cancer radioresistance (RR) as well as the biological signatures of radioresistant cancer cells still need to be clarified. In this regard, we discovered that breast, bladder, lung, neuroglioma, and prostate 6 Gy X-ray resistant cancer cells were characterized by an increase of lipid droplet (LD) number and that the cells containing highest LDs showed the highest clonogenic potential after irradiation. Moreover, we observed that LD content was tightly connected with the iron metabolism and in particular with the presence of the ferritin heavy chain (FTH1).

View Article and Find Full Text PDF

Whilst the impact of hypoxia and ionizing radiations on gene expression is well-understood, the interplay of these two effects is not. To better investigate this aspect at the gene level human bladder, brain, lung and prostate cancer cell lines were irradiated with photons (6 Gy, 6 MV LINAC) in hypoxic and normoxic conditions and prepared for the whole genome analysis at 72 h post-irradiation. The analysis was performed on the obtained 20,000 genes per cell line using PCA and hierarchical cluster algorithms to extract the most dominant genes altered by radiation and hypoxia.

View Article and Find Full Text PDF

Purpose: To investigate experimentally, if FLASH irradiation depletes oxygen within water for different radiation types such as photons, protons, and carbon ions.

Methods: This study presents measurements of the oxygen consumption in sealed, 3D-printed water phantoms during irradiation with x-rays, protons, and carbon ions at varying dose rates up to 340 Gy/s. The oxygen measurement was performed using an optical sensor allowing for noninvasive measurements.

View Article and Find Full Text PDF

Gliomas are the most common type of primary brain tumors, presenting high mortality and recurrence rates that highlight the need for the development of more efficient therapies. In that context, we investigated iron(iii) (FeL) and copper(ii) (CuL) complexes containing the tetradentate ligand 2-{[(3-chloro-2-hydroxy-propyl)-pyridin-2-ylmethyl-amino]-methyl}-phenol (L) as potential antimetastatic compounds in glioma cells. These complexes were designed to act as mimetics of antioxidant metalloenzymes (catalases and superoxide dismutase) and thus interfere with the production of reactive oxygen species (ROS), important signaling molecules that have been linked to the induction of Epithelial-Mesenchymal Transition (EMT) in cancer cells, a process associated with cancer invasion and aggressiveness.

View Article and Find Full Text PDF

Large-scale genomic and proteomic analysis has provided a wealth of information on biologically relevant systems, and the ability to analyze this information is crucial to uncovering important biological relationships. However, it has proven difficult to compare large datasets from different sources due to different gene and protein identifiers assigned by individual laboratories and database systems. Here, we describe the design of a fully automated blast program (BlastPro) that facilitates rapid comparison of large protein-protein, nucleotide--nucleotide, or nucleotide--protein datasets from numerous, independent studies.

View Article and Find Full Text PDF