Publications by authors named "Rachel H R Stanley"

Gas exchange between the atmosphere and ocean interior profoundly impacts global climate and biogeochemistry. However, our understanding of the relevant physical processes remains limited by a scarcity of direct observations. Dissolved noble gases in the deep ocean are powerful tracers of physical air-sea interaction due to their chemical and biological inertness, yet their isotope ratios have remained underexplored.

View Article and Find Full Text PDF

Microorganisms control key biogeochemical pathways, thus changes in microbial diversity, community structure and activity can affect ecosystem response to environmental drivers. Understanding factors that control the proportion of active microbes in the environment and how they vary when perturbed is critical to anticipating ecosystem response to global change. Increasing supplies of anthropogenic nitrogen to ecosystems globally makes it imperative that we understand how nutrient supply alters active microbial communities.

View Article and Find Full Text PDF

Noble gases dissolved in natural waters are useful tracers for quantifying physical processes. Here, we describe a field-deployable gas equilibration mass spectrometer (GEMS) that provides continuous, real-time measurements of Ne, Ar, Kr, and Xe mole ratios in natural waters. Gas is equilibrated with a membrane contactor cartridge and measured with a quadrupole mass spectrometer, after in-line purification with reactive metal alloy getters.

View Article and Find Full Text PDF

This study explores some of the physiological mechanisms responsible for high productivity near the shelf in the Western Antarctic Peninsula despite a short growing season and cold temperature. We measured gross and net primary production at Palmer Station during the summer of 2012/2013 via three different techniques: incubation with H2 (18) O; incubation with (14) CO2 ; and in situ measurements of O2 /Ar and triple oxygen isotope. Additional laboratory experiments were performed with the psychrophilic diatom Fragilariopsis cylindrus.

View Article and Find Full Text PDF