Osteoarthritis (OA) is a debilitating disease that impacts millions of individuals and has limited therapeutic options. A significant hindrance to therapeutic discovery is the lack of in vitro OA models that translate reliably to in vivo preclinical animal models. An alternative to traditional inflammatory cytokine models is the matrikine stimulation model, in which fragments of matrix proteins naturally found in OA tissues and synovial fluid, are used to stimulate cells of the joint.
View Article and Find Full Text PDFL. is a plant used in traditional medicine harboring pharmacological properties with anti-inflammatory, antinociceptive, hypoglycemiant and anesthetic activities. This study assessed the potential cytotoxic, genotoxic and mutagenic effects of ethanolic extract of on strains.
View Article and Find Full Text PDFThe objectives of this study were to evaluate temporal changes in lubricin, hyaluronan (HA), and HA molecular weight (MW) distributions in three distinct models of equine joint injury affecting the carpal (wrist), tarsal (ankle), and femoropatellar (knee) joints. To establish ranges for lubricin, HA, and HA MW distributions across multiple joints, we first evaluated clinically healthy, high-motion equine joints. Synovial fluid was collected from high-motion joints in horses without clinical signs of joint disease (n = 11 horses, 102 joints) and from research horses undergoing carpal osteochondral fragmentation (n = 8), talar cartilage impact injury (n = 7), and femoral trochlear ridge full-thickness cartilage injury (n = 22) prior to and following arthroscopically induced joint injury.
View Article and Find Full Text PDFBackground: Dietary calcium and phosphorus are required for bone and muscle development. Deficiencies of these macrominerals reduce bone mineral and muscle accretion potentially via alterations of mesenchymal stem cell (MSC) and satellite cell (SC) activities.
Objectives: With increasing interest in the role of early-life events on lifetime health outcomes, we aimed to elucidate the impact of dietary calcium and phosphorus, from deficiency through excess, on MSC and SC characteristics during neonatal development.