Atmospheric CO(2) concentrations are predicted to double within the next century and alter climate regimes, yet the extent that these changes will affect plant diseases remains unclear. In this study conducted over five years, we assessed how elevated CO(2) and interannual climatic variability affect Cercospora leaf spot diseases of two deciduous trees. Climatic data varied considerably between the five years and altered disease expression.
View Article and Find Full Text PDFTo understand how the increase in atmospheric CO2 from human activity may affect leaf damage by forest insects, we examined host plant preference and larval performance of a generalist herbivore, Antheraea polyphemus Cram., that consumed foliage developed under ambient or elevated CO2. Larvae were fed leaves from Quercus alba L.
View Article and Find Full Text PDFBy altering foliage quality, exposure to elevated levels of atmospheric CO(2) potentially affects the amount of herbivore damage experienced by plants. Here, we quantified foliar carbon (C) and nitrogen (N) content, C : N ratio, phenolic levels, specific leaf area (SLA) and the amount of leaf tissue damaged by chewing insects for 12 hardwood tree species grown in plots exposed to elevated CO(2) (ambient plus 200 microl l(-1)) using free-air CO(2) enrichment (FACE) over 3 yr. The effects of elevated CO(2) varied considerably by year and across species.
View Article and Find Full Text PDF