Publications by authors named "Rachel E Taylor"

The WHIRLY (WHY) family of DNA/RNA binding proteins fulfil multiple but poorly characterised functions in plants. We analysed WHY protein functions in the Arabidopsis Atwhy1, Atwhy3, Atwhy1why3 single and double mutants and wild type controls. The Atwhy3 and Atwhy1why3 double mutants showed a significant delay in flowering, having more siliques per plant but with fewer seeds per silique than the wild type.

View Article and Find Full Text PDF

Translational research is required to advance fundamental knowledge on plant immunity towards application in crop improvement. Recognition of microbe/pathogen-associated molecular patterns (MAMPs/PAMPs) triggers a first layer of immunity in plants. The broadly occurring family of necrosis- and ethylene-inducing peptide 1 (NEP1)-like proteins (NLPs) contains immunogenic peptide patterns that are recognized by a number of plant species.

View Article and Find Full Text PDF

Environmental stresses pose a significant threat to food security. Understanding the function of proteins that regulate plant responses to biotic and abiotic stresses is therefore pivotal in developing strategies for crop improvement. The WHIRLY (WHY) family of DNA-binding proteins are important in this regard because they fulfil a portfolio of important functions in organelles and nuclei.

View Article and Find Full Text PDF

Plants perceive and integrate information from the environment to time critical transitions in their life cycle. Some mechanisms underlying this quantitative signal processing have been described, whereas others await discovery. Seeds have evolved a mechanism to integrate environmental information by regulating the abundance of the antagonistically acting hormones abscisic acid (ABA) and gibberellin (GA).

View Article and Find Full Text PDF

Neisseria gonorrhoeae deploys a novel immune evasion strategy wherein the lacto-N-neotetraose (LNnT) structure of lipooligosaccharide (LOS) is capped by the bacterial sialyltransferase, using host cytidine-5'-monophosphate (CMP)-activated forms of the nine-carbon nonulosonate (NulO) sugar N-acetyl-neuraminic acid (Neu5Ac), a sialic acid (Sia) abundant in humans. This allows evasion of complement-mediated killing by recruiting factor H (FH), an inhibitor of the alternative complement pathway, and by limiting classical pathway activation ("serum-resistance"). We utilized CMP salts of six additional natural or synthetic NulOs, Neu5Gc, Neu5Gc8Me, Neu5Ac9Ac, Neu5Ac9Az, legionaminic acid (Leg5Ac7Ac) and pseudaminic acid (Pse5Ac7Ac), to define structural requirements of Sia-mediated serum-resistance.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) is a leading cause of mortality worldwide. COPD exacerbation, or episodic worsening of symptoms, often results in hospitalization and increased mortality rates. Airway infections by new bacterial strains, such as nontypeable Haemophilus influenzae (NTHi), are a major cause of COPD exacerbation.

View Article and Find Full Text PDF

Humans lack the common mammalian cell surface molecule N-glycolylneuraminic acid (Neu5Gc) due to a CMAH gene inactivation, which occurred approximately three million years ago. Modern humans produce antibodies specific for Neu5Gc. We hypothesized that anti-Neu5Gc antibodies could enter the female reproductive tract and target Neu5Gc-positive sperm or fetal tissues, reducing reproductive compatibility.

View Article and Find Full Text PDF

Recombinant glycoprotein therapeutics produced in nonhuman mammalian cell lines and/or with animal serum are often modified with the nonhuman sialic acid N-glycolylneuraminic acid (Neu5Gc; refs. 1,2). This documented contamination has generally been ignored in drug development because healthy individuals were not thought to react to Neu5Gc (ref.

View Article and Find Full Text PDF

The nonhuman sialic acid N-glycolylneuraminic acid (Neu5Gc) is metabolically incorporated into human tissues from certain mammalian-derived foods, and this occurs in the face of an anti-Neu5Gc "xeno-autoantibody" response. Given evidence that this process contributes to chronic inflammation in some diseases, it is important to understand when and how these antibodies are generated in humans. We show here that human anti-Neu5Gc antibodies appear during infancy and correlate with weaning and exposure to dietary Neu5Gc.

View Article and Find Full Text PDF

[reaction: see text] Described are the syntheses of eight macrocyclic peptides designed to trap Holliday junctions in bacteria, thereby inhibiting bacterial growth. These macrocycles were designed from linear dimerized hexapeptides that bind to the C-2 symmetrical Holliday junction. They were synthesized from three monomers using a combinatorial-like strategy that permits elucidation of the monomer role in accumulation of Holliday junctions and antibiotic activity.

View Article and Find Full Text PDF