Publications by authors named "Rachel E O'Neill"

Cancer remains the leading cause of death worldwide. Traditional treatments such as surgery, radiation, and chemotherapy have had limited efficacy, especially with late stage cancers. Cancer immunotherapy and targeted therapy have revolutionized how cancer is treated, especially in patients with late stage disease.

View Article and Find Full Text PDF

Allogeneic hematopoietic cell transplantation (allo-HCT) is a potentially curative therapy for hematologic malignancies. Donor T cells are able to eliminate residual tumor cells after allo-HCT, producing the beneficial graft-versus-tumor (GVT) effect, but can also cause graft-versus-host disease (GVHD) when attacking host normal tissues. We previously reported that granzyme B (GzmB) is involved in activation-induced cell death (AICD) of donor T cells and exerts differential impacts on GVHD and GVT effect.

View Article and Find Full Text PDF

The CD27-CD70 pathway is known to provide a costimulatory signal, with CD70 expressed on APCs and CD27 functions on T cells. Although CD70 is also expressed on activated T cells, it remains unclear how T cell-derived CD70 affects T cell function. Therefore, we have assessed the role of T cell-derived CD70 using adoptive-transfer models, including autoimmune inflammatory bowel disease and allogeneic graft-versus-host disease.

View Article and Find Full Text PDF

Allogeneic hematopoietic cell transplantation (allo-HCT) is a potentially curative treatment for hematologic and immunologic diseases. However, graft-versus-host disease (GVHD) may develop when donor-derived T cells recognize and damage genetically distinct normal host tissues. In addition to TCR signaling, costimulatory pathways are involved in T cell activation.

View Article and Find Full Text PDF

Granzyme B (GzmB) is a key cytotoxic molecule utilized by T cells to kill pathogen-infected cells or transformed tumor cells. Previous studies using allogeneic hematopoietic cell transplantation (allo-HCT) murine models showed that GzmB is required for CD8 T cells to cause graft-versus-host disease (GVHD). However, our recent study demonstrated that GzmB-mediated damage of CD8 T cells diminished their graft-versus-tumor (GVT) activity.

View Article and Find Full Text PDF

Graft-versus-host disease (GVHD) is the major complication of allogeneic hematopoietic cell transplantation, a potentially curative therapy for hematologic diseases. It has long been thought that murine bone marrow-derived T cells do not mediate severe GVHD because of their quantity and/or phenotype. During the course of experiments testing the impact of housing temperatures on GVHD, we discovered that this apparent resistance is a function of the relatively cool ambient housing temperature.

View Article and Find Full Text PDF

Granzyme B (GzmB) has previously been shown to be critical for CD8(+) T cell-mediated graft-versus-host disease (GVHD) but dispensable for GVHD mediated by CD4(+) T cells. However, previous studies used high doses of CD4(+) T cells in MHC-mismatched models that caused rapid and lethal GVHD. Because of the hyperacute lethality, it is possible that the role of GzmB was concealed by the system.

View Article and Find Full Text PDF