Publications by authors named "Rachel D Lowe"

Surface analysis is critical for the validation of microfluidic surface modifications for biology, chemistry, and physics applications. However, until now quantitative analytical methods have mostly been focused on open surfaces. Here, we present a new fluorescence imaging method to directly measure the surface coverage of functional groups inside assembled microchannels over a wide dynamic range.

View Article and Find Full Text PDF

There is considerable interest in the highly parallelized mass spectrometry analysis of complex sample mixtures without any time-consuming prepurification. Porous silicon-based laser desorption/ionization mass spectrometry (pSi LDI-MS) is enabling technology for such analysis. Previous studies have focused on pSi surface functionalization to enhance sensitivity of detection and engineer surfaces for sample capture and enrichment in LDI-MS analysis.

View Article and Find Full Text PDF

Cluster-size dependent behavior of pancreatic beta-cells has direct implications in islet transplantation therapy for type I diabetes treatment. Control over the cluster size enables evaluation of cluster-size-dependent function, ultimately leading to the production of beta-cell clusters with improved transplant efficacy. This work for the first time demonstrates the use of microcontact-printing-based cell patterning of discrete two- and three-dimensional clusters of pancreatic beta-cells.

View Article and Find Full Text PDF

The demand for analysis of oral fluid for illicit drugs has arisen with the increased adoption of roadside testing, particularly in countries where changes in legislation allow random roadside testing of drivers for the presence of a palette of illicit drugs such as methamphetamine (MA), 3,4-methylenedioxymethamphetamine (MDMA) and Delta9-tetrahydrocannabinol (THC). Oral samples are currently tested for such drugs at the roadside using an immunoassay-based commercial test kit. Positive roadside tests are sent for confirmatory laboratory analysis, traditionally by means of gas chromatography/mass spectrometry (GC/MS).

View Article and Find Full Text PDF

The development of a novel microfabricated device for oral drug delivery that overcomes many of the common barriers present in the gastrointestinal tract is reported. Specifically, the attachment of targeting ligands, subsequent device binding, and small molecule release from the microdevices in flow are investigated. A diffusion chamber that permits the simultaneous study of particle binding and small-molecule release under physiologically relevant shear conditions is developed.

View Article and Find Full Text PDF

The phase behavior and lateral organization of saturated phosphatidylethanolamine (PE) and phosphatidylcholine (PC) bilayers were investigated using atomic force microscopy (AFM) and force-volume (FV) imaging for both pure and two component mixed layers. The results demonstrated the existence of unexpected segregated domains in pure PE membranes at temperatures well below the transition temperature (T(m)) of the component phospholipid. These domains were of low mechanical stability and lacked the capacity for hydrogen bonding between lipid headgroups.

View Article and Find Full Text PDF