The Alaotran gentle lemur (Hapalemur Alaotrensis) is one of the most endangered primates in the world and shows a low success rate in captive breeding programmes. We tested a novel scent enrichment, made up of a synthesized mixture likely conveying information about female fertility, on four unsuccessful breeding pairs (n = 8 subjects) living at the Jersey, Birmingham, London (United Kingdom) and Mulhouse (France) zoos. We evaluated the effects of the scent enrichment on behavior (515 h of observation) and fecal endocrinology (cortisol and testosterone measurements) (n = 180 samples) comparing pre- enrichment, enrichment and post- enrichment phases.
View Article and Find Full Text PDFObjectives: The aim of this study was to explore the barriers and facilitators faced by clinical academics (CAs) in the Greater Manchester region, with particular attention to the experiences of minoritised groups.
Design: A qualitative study using semistructured interviews and focus groups was conducted. A reflexive thematic analysis was applied to identify key themes.
Banoxantrone (AQ4N) is a prototype hypoxia selective cytotoxin that is activated by haem containing reductases such as inducible nitric oxide synthase (iNOS). In the present study, we evaluate whether elevated levels of iNOS in human tumour cells will improve their sensitivity to AQ4N. Further, we examine the potential of radiation to increase cellular toxicity of AQ4N under normoxic (aerobic) and hypoxic conditions.
View Article and Find Full Text PDFSmall cell lung cancer (SCLC) is an aggressive tumor, associated with ectopic ACTH syndrome. We have shown that SCLC cells are glucocorticoid receptor (GR) deficient, and that restoration of GR expression confers glucocorticoid sensitivity and induces apoptosis in vitro. To determine the effects of GR expression in vivo, we characterized a mouse SCLC xenograft model that secretes ACTH precursor peptides, and so drives high circulating corticosterone concentrations (analogous to the ectopic ACTH syndrome).
View Article and Find Full Text PDFNitric oxide (NO) is a potent radiosensitizer of hypoxic mammalian cells. There have been many reports demonstrating radiosensitization in vitro and in vivo by the use of NO donors to generate NO by chemical means or by producing agents that mimic the free radical mechanism(s) of NO for potentiating radiosensitivity. However, much of this work has been done without taking account of the endogenous NO that is generated in tumor cells by NO synthase (NOS) in vitro or in tumor cells and host cells in solid tumors in vivo.
View Article and Find Full Text PDFTumor-associated macrophages (TAMs) are found in many solid tumors and have often been shown to accumulate in the hypoxic regions surrounding areas of necrosis. TAMs are the major site of expression of nitric oxide synthase (NOS), a heme-containing homodimeric enzyme consisting of oxygenase and reductase domains. The latter has a high degree of sequence homology to cytochrome P450 reductase and a functional consequence of this is the ability of NOS, under hypoxic conditions, to activate the bioreductive drugs tirapazamine and RSU1069.
View Article and Find Full Text PDFNitric oxide synthase (NOS) has been shown to be overexpressed in a number of human tumors compared to normal tissues and therefore potentially represents an exploitable target in future anticancer therapies. To achieve this, there will be a need to profile tumors to identify those expressing high levels of NOS; alternatively, endogenous (low) levels of NOS could be modulated by induction or through gene therapy approaches. NOS consists of a reductase domain which shares a high degree of sequence homology with P450 reductase and this domain supplies reducing equivalents to a haem containing oxygenase domain that is responsible for the production of nitric oxide.
View Article and Find Full Text PDFThe induced expression of carboxylesterase (CE) enzymes, which convert the prodrug irinotecan (CPT-11) into its active cytotoxic metabolite SN-38, constitutes a promising strategy for cancer gene therapy. By incorporating hypoxia-responsive elements (HREs) in conjunction with the transgene, expression can be targeted specifically to hypoxic tissues (such as solid tumours), expressing the hypoxia-inducible factor 1 (HIF-1). We have constructed a recombinant adenoviral vector, AdHRE-rCE, encoding the cDNA for the highly efficient rabbit liver CE (rCE), under the control of a HRE derived from the human phosphoglycerate kinase 1 (PGK-1) gene in conjunction with a minimal SV40 promoter.
View Article and Find Full Text PDFThe resistance of hypoxic cells to conventional chemotherapy is well documented. Using both adenovirus-mediated gene delivery and small molecules targeting hypoxia-inducible factor-1 (HIF-1), we evaluated the impact of HIF-1 inhibition on the sensitivity of hypoxic tumor cells to etoposide. The genetic therapy exploited a truncated HIF-1alpha protein that acts as a dominant-negative HIF-1alpha (HIF-1alpha-no-TAD).
View Article and Find Full Text PDFDrug-metabolizing enzymes and drug transporters are key determinants of the pharmacokinetics and pharmacodynamics of many antineoplastic agents. Metabolism and transport influence the cytotoxic effects of antineoplastic agents in target tumor cells and normal host tissues. This article summarizes several state-of-the-art approaches to enhancing the effectiveness and safety of cancer therapy based on recent developments in our understanding of antineoplastic drug metabolism and transport.
View Article and Find Full Text PDFPurpose: Tumor hypoxia is unequivocally linked to poor radiotherapy outcome. This study aimed to identify enhancer sequences that respond maximally to a combination of radiation and hypoxia for use in genetic radiotherapy approaches.
Methods And Materials: The influence of radiation (5 Gy) and hypoxia (1% O2) on reporter-gene expression driven by hypoxia (HRE) and radiation (Egr-1) responsive elements was evaluated in tumor cells grown as monolayers or multicellular spheroids.
Validation of targets for cancer drug discovery requires robust experimental models. Systems based on inducible gene expression are well suited to this purpose but are difficult to establish in several epithelial cell types. Using the recently discovered transcriptional transactivator (rtTA2S-M2), we developed a strategy for fast and efficient generation of Tet On cells.
View Article and Find Full Text PDFSolid tumors are characterized by regions of hypoxia that are inherently resistant to both radiotherapy and some chemotherapy. To target this resistant population, bioreductive drugs that are preferentially toxic to tumor cells in a hypoxic environment are being evaluated in clinical trials; the lead compound, tirapazamine (TPZ), is being used in combination with cisplatin and/or with radiotherapy. Crucially, tumor response to TPZ is also dependent on the cellular complement of reductases.
View Article and Find Full Text PDFIndolequinones such as mitomycin C (MMC) require enzymatic bioreduction to yield cytotoxic moieties. An attractive approach to overcome the potential variability in reductive bioactivation between tumors is to exploit specific enzyme-bioreductive drug combinations in an enzyme-directed gene therapy (GDEPT) approach. To this end, human breast cancer cell lines (T47D, MDA468, and MDA231) that overexpress either DT-diaphorase (DTD) or NADPH:cytochrome P450 reductase (P450R) have been developed.
View Article and Find Full Text PDFTirapazamine (TPZ) is the lead member of a class of bioreductive drugs currently in phase II and III clinical trials. TPZ requires metabolic activation to give a cytotoxic free radical species, and this hypoxia-mediated process is carried out by a variety of cellular reductases, including NADPH cytochrome c (P450) reductase (P540R). Nitric-oxide synthase (NOS) is widely expressed in human tumors, and this enzyme consists of an oxidase and a reductase domain, the latter showing striking homology to P450R.
View Article and Find Full Text PDFSemin Radiat Oncol
January 2003
Methods now exist for the identification of human tumors that contain significant numbers of hypoxic cells and are thereby suitable for treatment with bioreductive drugs to eliminate this refractory cell population. However, to fully exploit the potential of bioreductive drugs, they will need to be used in combination with other modalities likely to target the proliferating aerobic cells in the tumor. Radiation is the treatment that is most effective in killing aerobic cells; therefore, the present report reviews the available preclinical data on combined radiation/bioreductive drug treatments.
View Article and Find Full Text PDFCarboxypeptidase G2 (CPG2) is a powerful prodrug-converting enzyme. Without a requirement for endogenous enzymes or cofactors, it can directly activate mustard alkylating prodrugs to cytotoxic species, killing both quiescent and dividing cells. This paper provides the first report of its use in the context of a clinically relevant delivery vehicle using adenovirus vectors.
View Article and Find Full Text PDFQuinone based bioreductive drugs have, potentially, a very versatile use in cancer chemotherapy. They can be activated by DT-diaphorase and hence can be used to target tumour types rich in this (O2)-independent reductase enzyme. Small molecular modifications can substantially reduce specificity for DT-diaphorase and under these circumstances the quinones become much less toxic in air but retain their potent cytotoxic effects under hypoxic conditions.
View Article and Find Full Text PDF