Background: The association of peripapillary retinal nerve fibre layer (pRNFL) and ganglion cell-inner plexiform layer (GCIPL) thickness with neurodegeneration in multiple sclerosis (MS) is well established. The relationship of the adjoining inner nuclear layer (INL) with inflammatory disease activity is less well understood.
Objective: The objective of this paper is to investigate the relationship of INL volume changes with inflammatory disease activity in MS.
Background: The International Multiple Sclerosis Visual System Consortium (IMSVISUAL) was formed in November 2014 with the primary goal of improving research, care, and education regarding the role of the visual system in multiple sclerosis (MS) and related disorders.
Methods: In this review, we describe the formation, goals, activities, and structure of IMSVISUAL, as well as the relationship of IMSVISUAL with the Americas Committee for Treatment and Research in MS (ACTRIMS). Finally, we provide an overview of the work IMSVISUAL has completed to date, as well as an outline of research projects ongoing under the auspices of IMSVISUAL.
Unlabelled: : BACKGROUND:: The visual pathways are increasingly recognized as an ideal model to study neurodegeneration in multiple sclerosis (MS). Low-contrast letter acuity (LCLA) and optical coherence tomography (OCT) are validated measures of function and structure in MS. In fact, LCLA was the topic of a recent review by the Multiple Sclerosis Outcome Assessments Consortium (MSOAC) to qualify this visual measure as a primary or secondary clinical trial endpoint with the Food and Drug Administration (FDA) and other regulatory agencies.
View Article and Find Full Text PDFBackground: The optic nerve is a frequent site for involvement in multiple sclerosis (MS). Optical coherence tomography (OCT) detects thinning of the retinal nerve fiber layer (RNFL) in eyes of patients with MS and in those meeting criteria for clinically or radiologically isolated demyelinating syndromes. Current international diagnostic criteria for MS do not include the optic nerve as an imaging lesion site despite the high prevalence of acute optic neuritis (ON), or occult optic neuropathy, among early MS and clinically isolated syndrome patients; as well as most MS patients over the course of the disease.
View Article and Find Full Text PDFBackground: The King-Devick (K-D) test of rapid number naming is a reliable visual performance measure that is a sensitive sideline indicator of concussion when time scores worsen (lengthen) from preseason baseline. Within cohorts of youth athletes <18 years old, baseline K-D times become faster with increasing age. We determined the relation of rapid number-naming time scores on the K-D test to electronic measurements of saccade performance during preseason baseline assessments in a collegiate ice hockey team cohort.
View Article and Find Full Text PDFThe King-Devick (K-D) test of rapid number naming is a visual performance measure that captures saccadic eye movements. Patients with multiple sclerosis (MS) have slowed K-D test times associated with neurologic disability and reduced quality of life. We assessed eye movements during the K-D test to identify characteristics associated with slowed times.
View Article and Find Full Text PDFBackground: Although patients with acute optic neuritis (ON) recover high-contrast visual acuity (HCVA) to 20/40 or better in 95% of affected eyes, patients with a history of ON continue to note subjective abnormalities of vision. Furthermore, substantial and permanent thinning of the retinal nerve fiber layer (RNFL) and the ganglion cell layer (GCL) is now known to occur early in the course of ON. We measured vision-specific quality of life (QOL) in patients with a history of acute ON and recovery of VA to 20/40 or better in their affected eyes to determine how these QOL scores relate to RNFL and GCL thickness and low-contrast letter acuity (LCLA) across the spectrum of visual recovery.
View Article and Find Full Text PDFOptical coherence tomography (OCT) is a relatively new technology that is now routinely and very widely used by ophthalmologists for structural documentation of the optic nerve and retina. In neuro-ophthalmology and neurology, the value of OCT is ever expanding; its role in an increasing number of conditions is being reported in parallel with the advances of the technology. Currently, as a clinical tool, OCT is particularly useful for the structural measurement of peripapillary retinal nerve fiber layer thickness, optic nerve head volumetric analysis, and macular anatomy.
View Article and Find Full Text PDF