The environmental impact of oil spills is a critical concern, particularly pertaining to low sulfur marine diesel (LSMD) and high sulfur fuel oil (HSFO) that are commonly involved in coastal spills. Although transcriptomic biomonitoring of sentinel animals can be a powerful tool for assessing biological effects, conventional methods utilize lethal sampling to examine the liver. As a non-lethal alternative, we have previously shown salmonid caudal fin cyp1a1 is significantly responsive to LSMD-derived toxicants.
View Article and Find Full Text PDFOil spills that occur in high traffic coastal environments can have profound consequences for the health of marine ecosystems and the commercial and social interests that are dependent upon these habitats. Given that the global reliance on marine fuels is not abating, it is imperative to develop sensitive and robust tools to monitor oil contamination and remediation in a timely manner. Such tools are increasingly important for ascertaining the immediate and long-term effects of oil contamination on species of interest and local habitats as water-soluble components of oils, such as polycyclic aromatic hydrocarbons (PAHs), can persist post-remediation.
View Article and Find Full Text PDFAquat Toxicol
December 2022
Thyroid hormones (THs) are important developmental regulators in vertebrates, including during the metamorphosis of a tadpole into a frog. Metamorphosis is a post-embryonic developmental period initiated by TH production in the tadpole thyroid gland. The two main bioactive forms of TH are L-thyroxine (T) and 3,5,3'-triiodothyronine (T); these hormones have overlapping but distinct mechanisms of action.
View Article and Find Full Text PDFLow sulfur marine diesel (LSMD) is frequently involved in coastal spills and monitoring ecosystem damage, and the effectiveness of cleanup methods remains a challenge. The present study investigates the concentration and composition of polycyclic aromatic hydrocarbons (PAHs) dispersed in LSMD seawater accommodated fractions (WAFs) and assesses the effects of exposure on juvenile coho salmon ( Onchorhynchus kisutch). Three WAFs were prepared with 333, 1067, and 3333 mg/L LSMD.
View Article and Find Full Text PDFThyroid hormones (THs) regulate vertebrate growth, development, and metabolism. Despite their importance, there is a need for effective detection of TH-disruption by endocrine disrupting chemicals (EDCs). The frog olfactory system substantially remodels during TH-dependent metamorphosis and the objective of the present study is to examine olfactory system gene expression for TH biomarkers that can evaluate the biological effects of complex mixtures such as municipal wastewater.
View Article and Find Full Text PDFOlfaction is critical for survival, facilitating predator avoidance and food location. The nature of the olfactory system changes during amphibian metamorphosis as the aquatic herbivorous tadpole transitions to a terrestrial, carnivorous frog. Metamorphosis is principally dependent on the action of thyroid hormones (THs), l-thyroxine (T) and 3,5,3'-triiodothyronine (T), yet little is known about their influence on olfaction during this phase of postembryonic development.
View Article and Find Full Text PDF