The nuclear lamina in plant cells is composed of plant-specific proteins, including nuclear matrix constituent proteins (NMCPs), which have been postulated to be functional analogs of lamin proteins that provide structural integrity to the organelle and help stabilize the three-dimensional organization of the genome. Using genomic editing, we generated alleles for the three genes encoding NMCPs in cultivated tomato (Solanum lycopersicum) to determine if the consequences of perturbing the nuclear lamina in this crop species were similar to or distinct from those observed in the model Arabidopsis thaliana. Loss of the sole NMCP2-class protein was lethal in tomato but is tolerated in Arabidopsis.
View Article and Find Full Text PDFPlants lack lamin proteins but contain a class of coiled-coil proteins that serve as analogues to form a laminal structure at the nuclear periphery. These nuclear matrix constituent proteins (NMCPs) play important roles in regulating nuclear morphology and are partitioned into two distinct groups. We investigated s NMCPs (called CRWNs) to study the interrelationship between the three NMCP1-type paralogues (CRWN1, 2, and 3) and the lone NMCP2-type paralogue, CRWN4.
View Article and Find Full Text PDF