Publications by authors named "Rachel Broweleit"

Liposomes are used as model membranes in many scientific fields. Various methods exist to prepare liposomes, but common procedures include thin-film hydration followed by extrusion, freeze-thaw, and/or sonication. These procedures can produce liposomes at specific concentrations and lipid compositions, and researchers often assume that the concentration and composition of their liposomes are similar or identical to what would be expected if no lipid loss occurred.

View Article and Find Full Text PDF

Liposomes are widely used as model lipid membrane platforms in many fields, ranging from basic biophysical studies to drug delivery and biotechnology applications. Various methods exist to prepare liposomes, but common procedures include thin-film hydration followed by extrusion, freeze-thaw, and/or sonication. These procedures have the potential to produce liposomes at specific concentrations and membrane compositions, and researchers often assume that the concentration and composition of their liposomes are similar to, if not identical, to what would be expected if no lipid loss occurred during preparation.

View Article and Find Full Text PDF

Evaporative light scattering detectors (ELSD) are commonly used with high-performance liquid chromatography (HPLC) to separate and quantify lipids, which are typically not easily detectable by more conventional methods such as UV-visible detectors. In many HPLC-ELSD methods to analyze lipids, a volatile buffer is included in the mobile phase to control the pH and facilitate separation between lipid species. Here, we report an unintended effect that buffer choice can have in HPLC-ELSD analysis of lipids - the identity and concentration of the buffer can substantially influence the resulting ELSD peak areas.

View Article and Find Full Text PDF

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common blood disorder, presenting multiple symptoms, including hemolytic anemia. It affects 400 million people worldwide, with more than 160 single mutations reported in G6PD. The most severe mutations (about 70) are classified as class I, leading to more than 90% loss of activity of the wild-type G6PD.

View Article and Find Full Text PDF