Publications by authors named "Rachel Bridson"

Brushite-forming calcium phosphate cements are of great interest as bone replacement materials because they are resorbable in physiological conditions. Cell-attached culture beads formed from this material could be of great use for cell therapy. Despite a significant amount of work on optimizing the physicochemical properties of these materials, there are very few studies that have evaluated the capacity of the materials to facilitate cell adhesion.

View Article and Find Full Text PDF

A method based on a double emulsion system (solid-in-water-in-oil-in-water) has been developed for the production of nanoparticles-in-microparticles (NIMs). The distribution of nanoparticles within the NIMs was explored using light and electron microscopy and through assessment of drug loading and release profiles. The extent of nanoparticle entrapment within the NIMs was found to be dependent on the state (wet vs.

View Article and Find Full Text PDF

Background: Public policy and clinical treatment in tobacco addiction in the UK has focused on cessation: an abrupt attempt to stop all cigarettes. However, recent evidence suggests that allowing more gradual withdrawal from tobacco or even permanent partial substitution by nicotine replacement therapy (NRT) could lead to net benefits to public health. No jurisdiction has introduced smoking reduction programmes in normal clinical care and the best methods for their implementation is uncertain.

View Article and Find Full Text PDF

Biopolymers such as alginates have been widely researched for clinical use. Their clinical application, however, have been limited due to their unpredictable and often rapid degradation rates. Here we show that the degradation of an alginate hydrogel can be tailored through the addition of orthosilicic acid (OSA).

View Article and Find Full Text PDF

Foaming using supercritical CO(2) is a well-known process for the production of polymeric scaffolds for tissue engineering. However, this method typically leads to scaffolds with low pore interconnectivity, resulting in insufficient mass transport and a heterogeneous distribution of cells. In this study, microparticulate silica was added to the polymer during processing and the effects of this particulate seeding on the interconnectivity of the pore structure and pore size distribution were investigated.

View Article and Find Full Text PDF