Bacterial type IV secretion systems (T4SSs) are a versatile family of macromolecular translocators, collectively able to recruit diverse DNA and protein substrates and deliver them to a wide range of cell types. Presently, there is little understanding of how T4SSs recognize substrate repertoires and form productive contacts with specific target cells. Although T4SSs are composed of a number of conserved subunits and adopt certain conserved structural features, they also display considerable compositional and structural diversity.
View Article and Find Full Text PDFBacterial type IV secretion systems (T4SSs) are a versatile family of macromolecular translocators, collectively able to recruit diverse DNA and protein substrates and deliver them to a wide range of cell types. Presently, there is little understanding of how T4SSs recognize substrate repertoires and form productive contacts with specific target cells. Although T4SSs are composed of a number of conserved subunits and adopt certain conserved structural features, they also display considerable compositional and structural diversity.
View Article and Find Full Text PDFAlthough inflammatory bowel diseases are on the rise, what factors influence IBD risk and severity, and the underlying mechanisms remain to be fully understood. Although host genetics, microbiome, and environmental factors have all been shown to correlate with the development of IBD, cause and effect are difficult to disentangle in this context. For example, AIEC is a known pathobiont found in IBD patients, but it remains unclear if gut inflammation during IBD facilitates colonization with AIEC, or if AIEC colonization makes the host more susceptible to pro-inflammatory stimuli.
View Article and Find Full Text PDFAntimicrob Steward Healthc Epidemiol
August 2023
Objective: To determine the prevalence of severe acute respiratory coronavirus virus 2 (SARS-CoV-2) IgG nucleocapsid (N) antibodies among healthcare personnel (HCP) with no prior history of COVID-19 and to identify factors associated with seropositivity.
Design: Prospective cohort study.
Setting: An academic, tertiary-care hospital in St.
Yale J Biol Med
December 2022
Antibiotic-resistant organisms (AROs) are difficult and costly to treat, associated with high mortality rates, and are on the rise. In the United States, there is limited tracking of AROs, which can contribute to transmission and inhibit infection prevention interventions. Surveillance is limited by a lack of standardized methods for colonization screening and limited communication regarding patient ARO-status between healthcare settings.
View Article and Find Full Text PDFAntimicrob Steward Healthc Epidemiol
June 2022
In a prospective cohort of healthcare personnel (HCP), we measured severe acute respiratory syndrome coronavirus virus 2 (SARS-CoV-2) nucleocapsid IgG antibodies after SARS-CoV-2 infection. Among 79 HCP, 68 (86%) were seropositive 14-28 days after their positive PCR test, and 54 (77%) of 70 were seropositive at the 70-180-day follow-up. Many seropositive HCP (95%) experienced an antibody decline by the second visit.
View Article and Find Full Text PDFF plasmids circulate widely among the Enterobacteriaceae through encoded type IV secretion systems (T4SS s). Assembly of T4SS s and associated F pili requires 10 VirB/VirD4-like Tra subunits and eight or more F-specific subunits. Recently, we presented evidence using in situ cryoelectron tomography (cryoET) that T4SS s undergo structural transitions when activated for pilus production, and that assembled pili are deposited onto alternative basal platforms at the cell surface.
View Article and Find Full Text PDFBackground: Hospitalized patients with diarrhea who have a negative Clostridoides difficile (C. difficile) test are not routinely evaluated for alternative causes of infectious diarrhea. This study assessed for potential infectious causes of diarrhea in hospitalized patients with an order for repeat C.
View Article and Find Full Text PDFEnterohemorrhagic (EHEC) is a foodborne pathogen that colonizes the gastrointestinal tract and has evolved intricate mechanisms to sense and respond to the host environment. Upon the sensation of chemical and physical cues specific to the host's intestinal environment, locus of enterocyte effacement (LEE)-encoded virulence genes are activated and promote intestinal colonization. The LEE transcriptional activator GrlA mediates EHEC's response to mechanical cues characteristic of the intestinal niche, including adhesive force that results from bacterial adherence to epithelial cells and fluid shear that results from intestinal motility and transit.
View Article and Find Full Text PDFThe ESX-1 (ESAT-6 system 1) secretion system plays a conserved role in the virulence of diverse mycobacterial pathogens, including the human pathogen and , an environmental mycobacterial species. The ESX-1 system promotes the secretion of protein virulence factors to the extracytoplasmic environment. The secretion of these proteins triggers the host response by lysing the phagosome during macrophage infection.
View Article and Find Full Text PDFCRISPR advances genome engineering by directing endonuclease sequence specificity with a guide RNA molecule (gRNA). For precisely targeting a gene for modification, each genetic construct requires a unique gRNA. By generating a gRNA against the flippase recognition target (FRT) site, a common genetic element shared by multiple genetic collections, CRISPR-FRT circumvents this design constraint to provide a broad platform for fast, scarless, off-the-shelf genome engineering.
View Article and Find Full Text PDFis a nontuberculous pathogen of poikilothermic fish and an opportunistic human pathogen. Like tuberculous mycobacteria, the M strain requires the ESX-1 (ESAT-6 system 1) secretion system for virulence in host cells. EsxB and EsxA, two major virulence factors exported by the ESX-1 system, are encoded by the genes within the ESX-1 locus.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2017
ESX (ESAT-6 system) export systems play diverse roles across mycobacterial species. Interestingly, genetic disruption of ESX systems in different species does not result in an accumulation of protein substrates in the mycobacterial cell. However, the mechanisms underlying this observation are elusive.
View Article and Find Full Text PDFMycobacterial 6-kDa early secreted antigenic target (ESAT-6) system (ESX) exporters transport proteins across the cytoplasmic membrane. Many proteins transported by ESX systems are then translocated across the mycobacterial cell envelope and secreted from the cell. Although the mechanism underlying protein transport across the mycolate outer membrane remains elusive, the ESX systems are closely connected with and localize to the cell envelope.
View Article and Find Full Text PDFMycobacterial pathogens use the ESAT-6 system 1 (Esx-1) exporter to promote virulence. Previously, we used gene disruption and complementation to conclude that the MMAR_0039 gene in Mycobacterium marinum is required to promote Esx-1 export. Here we applied molecular genetics, proteomics, and whole-genome sequencing to demonstrate that the MMAR_0039 gene is not required for Esx-1 secretion or virulence.
View Article and Find Full Text PDF