Publications by authors named "Rachel Bleach"

Purpose: There is strong epidemiologic evidence indicating that estrogens may not be the sole steroid drivers of breast cancer. We hypothesize that abundant adrenal androgenic steroid precursors, acting via the androgen receptor (AR), promote an endocrine-resistant breast cancer phenotype.

Experimental Design: AR was evaluated in a primary breast cancer tissue microarray ( = 844).

View Article and Find Full Text PDF

To date, almost all solid malignancies have implicated insulin-like growth factor (IGF) signalling as a driver of tumour growth. However, the remarkable level of crosstalk between sex hormones, the IGF-1 receptor (IGF-1R) and its ligands IGF-1 and 2 in endocrine driven cancers is incompletely understood. Similar to the sex steroids, IGF signalling is essential in normal development as well as growth and tissue homoeostasis, and undergoes a steady decline with advancing age and increasing visceral adiposity.

View Article and Find Full Text PDF
Article Synopsis
  • Triple-negative breast cancer (TNBC) lacks targeted therapies, and about 70% of patients experience treatment resistance often due to abnormal mitochondrial apoptosis signaling.
  • Researchers conducted a phenotypic small-molecule screen and discovered a compound called BAS-2 that operates similarly to histone deacetylase inhibitors (HDAC).
  • BAS-2 was found to selectively inhibit HDAC6, leading to the identification of its new role in regulating glycolytic metabolism in TNBC cells through advanced mass spectrometry techniques.
View Article and Find Full Text PDF

Divergent roles for androgen receptor (AR) in breast cancer have been reported. Following aromatase inhibitor (AI) treatment, the conversion of circulating androgens into estrogens can be diminished by >99%. We wished to establish whether the steroid environment can dictate the role of AR and the implications of this for subsequent therapy.

View Article and Find Full Text PDF

Androgen receptor (AR) is the most widely expressed steroid receptor protein in normal breast tissue and is detectable in approximately 90% of primary breast cancers and 75% of metastatic lesions. However, the role of AR in breast cancer development and progression is mired in controversy with evidence suggesting it can either inhibit or promote breast tumorigenesis. Studies have shown it to antagonize estrogen receptor alpha (ERα) DNA binding, thereby preventing pro-proliferative gene transcription; whilst others have demonstrated AR to take on the mantle of a pseudo ERα particularly in the setting of triple negative breast cancer.

View Article and Find Full Text PDF