Infect Control Hosp Epidemiol
September 2024
During the coronavirus disease 2019 pandemic, mathematical modeling has been widely used to understand epidemiological burden, trends, and transmission dynamics, to facilitate policy decisions, and, to a lesser extent, to evaluate infection prevention and control (IPC) measures. This review highlights the added value of using conventional epidemiology and modeling approaches to address the complexity of healthcare-associated infections (HAI) and antimicrobial resistance. It demonstrates how epidemiological surveillance data and modeling can be used to infer transmission dynamics in healthcare settings and to forecast healthcare impact, how modeling can be used to improve the validity of interpretation of epidemiological surveillance data, how modeling can be used to estimate the impact of IPC interventions, and how modeling can be used to guide IPC and antimicrobial treatment and stewardship decision-making.
View Article and Find Full Text PDFThe COVID-19 pandemic has highlighted the need to upgrade systems for infectious disease surveillance and forecasting and modeling of the spread of infection, both of which inform evidence-based public health guidance and policies. Here, we discuss requirements for an effective surveillance system to support decision making during a pandemic, drawing on the lessons of COVID-19 in the U.S.
View Article and Find Full Text PDFDuring the COVID-19 pandemic, forecasting COVID-19 trends to support planning and response was a priority for scientists and decision makers alike. In the United States, COVID-19 forecasting was coordinated by a large group of universities, companies, and government entities led by the Centers for Disease Control and Prevention and the US COVID-19 Forecast Hub (https://covid19forecasthub.org).
View Article and Find Full Text PDFImportance: Infections due to multidrug-resistant organisms (MDROs) are associated with increased morbidity, mortality, length of hospitalization, and health care costs. Regional interventions may be advantageous in mitigating MDROs and associated infections.
Objective: To evaluate whether implementation of a decolonization collaborative is associated with reduced regional MDRO prevalence, incident clinical cultures, infection-related hospitalizations, costs, and deaths.
Background: Emerging multidrug-resistant organisms (MDROs), such as carbapenem-resistant Enterobacterales (CRE), can spread rapidly in a region. Facilities that care for high-acuity patients with longer stays may have a disproportionate impact on this spread.
Objective: We assessed the impact of implementing preventive interventions, directed at a subset of facilities, on regional prevalence.
Background: Antiviral chemoprophylaxis is recommended for use during influenza outbreaks in nursing homes to prevent transmission and severe disease among non-ill residents. Centers for Disease Control and Prevention (CDC) guidance recommends prophylaxis be initiated for all non-ill residents once an influenza outbreak is detected and be continued for at least 14 days and until 7 days after the last laboratory-confirmed influenza case is identified. However, not all facilities strictly adhere to this guidance and the impact of such partial adherence is not fully understood.
View Article and Find Full Text PDFOur ability to forecast epidemics far into the future is constrained by the many complexities of disease systems. Realistic longer-term projections may, however, be possible under well-defined scenarios that specify the future state of critical epidemic drivers. Since December 2020, the U.
View Article and Find Full Text PDFOur ability to forecast epidemics more than a few weeks into the future is constrained by the complexity of disease systems, our limited ability to measure the current state of an epidemic, and uncertainties in how human action will affect transmission. Realistic longer-term projections (spanning more than a few weeks) may, however, be possible under defined scenarios that specify the future state of critical epidemic drivers, with the additional benefit that such scenarios can be used to anticipate the comparative effect of control measures. Since December 2020, the U.
View Article and Find Full Text PDFCarbapenem-resistant (CRE) are among the most concerning antibiotic resistance threats due to high rates of multidrug resistance, transmissibility in health care settings, and high mortality rates. We evaluated the potential for regional genomic surveillance to track the spread of -carrying CRE (KPC-CRE) by using isolate collections from health care facilities in three U.S.
View Article and Find Full Text PDFReconstructing the incidence of SARS-CoV-2 infection is central to understanding the state of the pandemic. Seroprevalence studies are often used to assess cumulative infections as they can identify asymptomatic infection. Since July 2020, commercial laboratories have conducted nationwide serosurveys for the U.
View Article and Find Full Text PDFObjectives: The Centers for Disease Control and Prevention (CDC) recommends implementing Enhanced Barrier Precautions (EBP) for all nursing home (NH) residents known to be colonized with targeted multidrug-resistant organisms (MDROs), wounds, or medical devices. Differences in health care personnel (HCP) and resident interactions between units may affect risk of acquiring and transmitting MDROs, affecting EBP implementation. We studied HCP-resident interactions across a variety of NHs to characterize MDRO transmission opportunities.
View Article and Find Full Text PDFIn Spring 2021, the highly transmissible SARS-CoV-2 Delta variant began to cause increases in cases, hospitalizations, and deaths in parts of the United States. At the time, with slowed vaccination uptake, this novel variant was expected to increase the risk of pandemic resurgence in the US in summer and fall 2021. As part of the COVID-19 Scenario Modeling Hub, an ensemble of nine mechanistic models produced 6-month scenario projections for July-December 2021 for the United States.
View Article and Find Full Text PDFThe Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Omicron variant has been hypothesized to exhibit faster clearance (time from peak viral concentration to clearance of acute infection), decreased sensitivity of antigen tests, and increased immune escape (the ability of the variant to evade immunity conferred by past infection or vaccination) compared to prior variants. These factors necessitate reevaluation of prevention and control strategies, particularly in high-risk, congregate settings like nursing homes that have been heavily impacted by other coronavirus disease 2019 (COVID-19) variants. We used a simple model representing individual-level viral shedding dynamics to estimate the optimal strategy for testing nursing home healthcare personnel and quantify potential reduction in transmission of COVID-19.
View Article and Find Full Text PDFWe expanded a published mathematical model of SARS-CoV-2 transmission with complex, age-structured transmission and with laboratory-derived source and wearer protection efficacy estimates for a variety of face masks to estimate their impact on COVID-19 incidence and related mortality in the United States. The model was also improved to allow realistic age-structured transmission with a pre-specified R0 of transmission, and to include more compartments and parameters, e.g.
View Article and Find Full Text PDFAs of 2 September 2021, United States nursing homes have reported >675,000 COVID-19 cases and >134,000 deaths according to the Centers for Medicare & Medicaid Services (CMS). More than 205,000,000 persons in the United States had received at least one dose of a COVID-19 vaccine (62% of total population) as of 2 September 2021. We investigate the role of vaccination in controlling future COVID-19 outbreaks.
View Article and Find Full Text PDFShort-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub (https://covid19forecasthub.
View Article and Find Full Text PDFBackground: SARS-CoV-2 vaccination of persons aged 12 years and older has reduced disease burden in the United States. The COVID-19 Scenario Modeling Hub convened multiple modeling teams in September 2021 to project the impact of expanding vaccine administration to children 5-11 years old on anticipated COVID-19 burden and resilience against variant strains.
Methods: Nine modeling teams contributed state- and national-level projections for weekly counts of cases, hospitalizations, and deaths in the United States for the period September 12, 2021 to March 12, 2022.
The Advisory Committee on Immunization Practices (ACIP) recommended phased allocation of SARS-CoV-2 vaccines in December 2020. To support the development of this guidance, we used a mathematical model of SARS-CoV-2 transmission to evaluate the relative impact of three vaccine allocation strategies on infections, hospitalizations, and deaths. All three strategies initially prioritized healthcare personnel (HCP) for vaccination.
View Article and Find Full Text PDFMathematical models are used to gauge the impact of interventions for healthcare-associated infections. As with any analytic method, such models require many assumptions. Two common assumptions are that asymptomatically colonized individuals are more likely to be hospitalized and that they spend longer in the hospital per admission because of their colonization status.
View Article and Find Full Text PDFUsing an agent-based model, we examined the impact of community prevalence, the Delta variant, staff vaccination coverage, and booster vaccines for residents on outbreak dynamics in nursing homes. Increased staff coverage and high booster vaccine effectiveness leads to fewer infections, but cumulative incidence is highly dependent on community transmission.
View Article and Find Full Text PDFNursing homes (NH) were among the first settings to receive COVID-19 vaccines in the United States, but staff vaccination coverage remains low at an average of 64%. Using an agent-based model, we examined the impact of community prevalence, the Delta variant, staff vaccination coverage, and boosters for residents on outbreak dynamics in nursing homes. We found that increased staff primary series coverage and high booster vaccine effectiveness (VE) in residents leads to fewer infections and that the cumulative incidence is highly dependent on community transmission.
View Article and Find Full Text PDFWhat Is Already Known About This Topic?: The highly transmissible SARS-CoV-2 Delta variant has begun to cause increases in cases, hospitalizations, and deaths in parts of the United States. With slowed vaccination uptake, this novel variant is expected to increase the risk of pandemic resurgence in the US in July-December 2021.
What Is Added By This Report?: Data from nine mechanistic models project substantial resurgences of COVID-19 across the US resulting from the more transmissible Delta variant.