Introduction: Ocean warming combined with extreme climatic events, such as marine heatwaves and flash flooding events, threaten seagrasses globally. How seagrasses cope with these challenges is uncertain, particularly for range-edge populations of species such as in Shark Bay, Western Australia. Analyzing gene expression while manipulating multiple stressors provides insight into the genetic response and resilience of seagrasses to climate change.
View Article and Find Full Text PDFEvery year, perhaps as much as 800 million tons of hydrocarbons enters the environment; alkanes make up a large percentage of it. Most are transformed by organisms that utilize these molecules as sources of energy and carbon. Both aerobic and anaerobic alkane transformation chemistries exist, capitalizing on the presence of alkanes in both oxic and anoxic environments.
View Article and Find Full Text PDFBackground And Aims: Rice accounts for around 20% of the calories consumed by humans. Essential nutrients like zinc (Zn) are crucial for rice growth and for populations relying on rice as a staple food. No well-established study method exists.
View Article and Find Full Text PDFClimate change and extreme climatic events, such as marine heatwaves (MHWs), are threatening seagrass ecosystems. Metabolomics can be used to gain insight into early stress responses in seagrasses and help to develop targeted management and conservation measures. We used metabolomics to understand the temporal and mechanistic response of leaf metabolism in seagrasses to climate change.
View Article and Find Full Text PDFAlkanes are the most energy-rich form of carbon and are widely dispersed in the environment. Their transformation by microbes represents a key step in the global carbon cycle. Alkane monooxygenase (AlkB), a membrane-spanning metalloenzyme, converts straight chain alkanes to alcohols in the first step of the microbially-mediated degradation of alkanes, thereby playing a critical role in the global cycling of carbon and the bioremediation of oil.
View Article and Find Full Text PDFThe complexity of genetic variant interpretation means that a proportion of individuals who undergo genetic testing for a hereditary cancer syndrome will have their test result reclassified over time. Such a reclassification may involve a clinically significant upgrade or downgrade in pathogenicity, which may have significant implications for medical management. To date, few studies have examined the psychosocial impact of a reclassification in a hereditary cancer syndrome context.
View Article and Find Full Text PDFMetallothionein 3 (MT-3) is a cysteine-rich metal-binding protein that is expressed in the mammalian central nervous system and kidney. Various reports have posited a role for MT-3 in regulating the actin cytoskeleton by promoting the assembly of actin filaments. We generated purified, recombinant mouse MT-3 of known metal compositions, either with zinc (Zn), lead (Pb), or copper/zinc (Cu/Zn) bound.
View Article and Find Full Text PDFChem Sci
May 2022
Metallothioneins (MTs) are a ubiquitous class of small metal-binding proteins involved in metal homeostasis and detoxification. While known for their high affinity for d metal ions, there is a surprising dearth of thermodynamic data on metals binding to MTs. In this study, Zn and Cu binding to mammalian metallothionein-3 (MT-3) were quantified at pH 7.
View Article and Find Full Text PDFGlobal warming is modifying the phenology, life-history traits and biogeography of species around the world. Evidence of these effects have increased over recent decades; however, we still have a poor understanding of the possible outcomes of their interplay across global climatic gradients, hindering our ability to accurately predict the consequences of climate change in populations and ecosystems. We examined the effect that changes in biogeography can have on the life-history traits of two of the most successful range-extending fish species in the world: the tropical rabbitfishes Siganus fuscescens and Siganus rivulatus.
View Article and Find Full Text PDFAlkane-oxidizing enzymes play an important role in the global carbon cycle. Alkane monooxygenase (AlkB) oxidizes most of the medium-chain length alkanes in the environment. The first AlkB identified was from GPo1 (initially known as ) in the early 1970s, and it continues to be the family member about which the most is known.
View Article and Find Full Text PDFAlkane monooxygenase (AlkB) is a non-heme diiron enzyme that catalyzes the hydroxylation of alkanes. It is commonly found in alkanotrophic organisms that can live on alkanes as their sole source of carbon and energy. Activation of AlkB occurs via two-electron reduction of its diferric active site, which facilitates the binding, activation, and cleavage of molecular oxygen for insertion into an inert CH bond.
View Article and Find Full Text PDFThis study aimed to describe the acceptability and perceived barriers and enablers to establish a national registry targeting carriers of pathogenic variants in cancer susceptibility genes from stakeholders' perspectives. Such a registry may effectively target carriers to translate existing research findings into optimised clinical care and provide a population-level resource for further clinical research and new gene and therapy discovery. In-depth interviews were conducted with individuals from four stakeholder groups: carriers of pathogenic variants, healthcare professionals, data custodians from the field of familial cancer, and heads of molecular pathology laboratories.
View Article and Find Full Text PDFBackground: This nationwide study assessed the impact of nationally agreed cancer genetics guidelines on use of BRCA1/2 germline testing, risk management advice given by health professionals to women with pathogenic BRCA1/2 variants and uptake of such advice by patients.
Methods: Clinic files of 883 women who had initial proband screens for BRCA1/2 pathogenic variants at 12 familial cancer clinics between July 2008-July 2009 (i.e.
Interest in understanding the environmental distribution of the alkane monooxygenase (AlkB) enzyme led to the identification of over 100 distinct alkane monooxygenase (AlkB) enzymes containing a covalently bound, or fused, rubredoxin. The rubredoxin-fused AlkB from Dietzia cinnamea was cloned as a full-length protein and as a truncated protein with the rubredoxin domain deleted. A point mutation (V91W) was introduced into the full-length protein, with the goal of assessing how steric bulk in the putative substrate channel might affect selectivity.
View Article and Find Full Text PDFAu nanoparticles (NP) on TiO have been shown to be effective catalysts for selective oxidation reactions by using molecular oxygen. In this work, we have studied the influence of support morphology on the catalytic activity of Au/TiO catalysts. Two TiO anatase supports, a nanoplatelet-shaped material with predominantly the {001} facet exposed and a truncated bipyramidal-shaped nanoparticle with predominantly the {101} facet exposed, were prepared by using a nonaqueous solvothermal method and characterized by using DRIFTS, XPS, and TEM.
View Article and Find Full Text PDFBackground: This sub-study of the Australian Genomics Cardiovascular Genetic Disorders Flagship sought to conduct the first nation-wide audit in Australia to establish the current practices across cardiac genetics clinics.
Method: An audit of records of patients with a suspected genetic heart disease (cardiomyopathy, primary arrhythmia, autosomal dominant congenital heart disease) who had a cardiac genetics consultation between 1st January 2016 and 31 July 2018 and were offered a diagnostic genetic test.
Results: This audit included 536 records at multidisciplinary cardiac genetics clinics from 11 public tertiary hospitals across five Australian states.
Zinc is important in neurogenesis, but excessive levels can cause apoptosis and other pathologies leading to cognitive impairments. Mast cells are present in many brain regions including the hippocampus, an area rich in vesicular zinc. Mast cells contain zinc-rich granules and a well-developed mechanism for uptake of zinc ions; both features point to the potential for a role in zinc homeostasis.
View Article and Find Full Text PDFThe multifactorial likelihood analysis method has demonstrated utility for quantitative assessment of variant pathogenicity for multiple cancer syndrome genes. Independent data types currently incorporated in the model for assessing BRCA1 and BRCA2 variants include clinically calibrated prior probability of pathogenicity based on variant location and bioinformatic prediction of variant effect, co-segregation, family cancer history profile, co-occurrence with a pathogenic variant in the same gene, breast tumor pathology, and case-control information. Research and clinical data for multifactorial likelihood analysis were collated for 1,395 BRCA1/2 predominantly intronic and missense variants, enabling classification based on posterior probability of pathogenicity for 734 variants: 447 variants were classified as (likely) benign, and 94 as (likely) pathogenic; and 248 classifications were new or considerably altered relative to ClinVar submissions.
View Article and Find Full Text PDF