Publications by authors named "Rachel A Slatyer"

The Australian skyhopper genus Kosciuscola Sjstedt consists of brachypterous species that inhabit the Australian alpine and subalpine region. The genus used to include 5 species and 1 subspecies, but according to a recent phylogenomic study, there could be as many as 14 species in the genus, that are genetically and geographically isolated from each other. This study represents the first step in describing and documenting the diversity of this interesting genus.

View Article and Find Full Text PDF

Quantitative genetic variation (QGV) represents a major component of adaptive potential and, if reduced toward range-edge populations, could prevent a species' expansion or adaptive response to rapid ecological change. It has been hypothesized that QGV will be lower at the range edge due to small populations-often the result of poor habitat quality-and potentially decreased gene flow. However, whether central populations are higher in QGV is unknown.

View Article and Find Full Text PDF

Conservation managers are under increasing pressure to make decisions about the allocation of finite resources to protect biodiversity under a changing climate. However, the impacts of climate and global change drivers on species are outpacing our capacity to collect the empirical data necessary to inform these decisions. This is particularly the case in the Australian Alps which have already undergone recent changes in climate and experienced more frequent large-scale bushfires.

View Article and Find Full Text PDF

Seasonal snow is among the most important factors governing the ecology of many terrestrial ecosystems, but rising global temperatures are changing snow regimes and driving widespread declines in the depth and duration of snow cover. Loss of the insulating snow layer will fundamentally change the environment. Understanding how individuals, populations, and communities respond to different snow conditions is thus essential for predicting and managing future ecosystem change.

View Article and Find Full Text PDF

Species responses to environmental change are likely to depend on existing genetic and phenotypic variation, as well as evolutionary potential. A key challenge is to determine whether gene flow might facilitate or impede genomic divergence among populations responding to environmental change, and if emergent phenotypic variation is dependent on gene flow rates. A general expectation is that patterns of genetic differentiation in a set of codistributed species reflect differences in dispersal ability.

View Article and Find Full Text PDF

A central challenge in ecology and biogeography is to determine the extent to which physiological constraints govern the geographic ranges of species along environmental gradients. This study tests the hypothesis that temperature and desiccation tolerance are associated with the elevational ranges of 12 ground beetle species (genus Nebria) occurring on Mt. Rainier, Washington, U.

View Article and Find Full Text PDF

For many terrestrial species, habitat associations and range size are dependent on physiological limits, which in turn may influence large-scale patterns of species diversity. The temperature range experienced by individuals is considered to shape the breadth of the thermal niche, with species occupying temporally and/or geographically stable climates tolerating a narrow temperature range. High-elevation environments experience large temperature fluctuations, with frequent periods below 0 °C, but Grylloblatta (Grylloblattodea: Grylloblattidae) occupy climatically stable microhabitats within this region.

View Article and Find Full Text PDF

Background: Mountain landscapes are topographically complex, creating discontinuous 'islands' of alpine and sub-alpine habitat with a dynamic history. Changing climatic conditions drive their expansion and contraction, leaving signatures on the genetic structure of their flora and fauna. Australia's high country covers a small, highly fragmented area.

View Article and Find Full Text PDF

The range of resources that a species uses (i.e. its niche breadth) might determine the geographical area it can occupy, but consensus on whether a niche breadth-range size relationship generally exists among species has been slow to emerge.

View Article and Find Full Text PDF

The consequences of polyandry for female fitness are controversial. Sexual conflict studies and a meta-analysis of mating rates in insects suggest that there is a longevity cost when females mate repeatedly. Even so, compensatory material benefits can elevate egg production and fertility, partly because polyandry ensures an adequate sperm supply.

View Article and Find Full Text PDF