The success of plant species under climate change will be determined, in part, by their phenological responses to temperature. Despite the growing need to forecast such outcomes across entire species ranges, it remains unclear how phenological sensitivity to temperature might vary across individuals of the same species. In this study, we harnessed community science data to document intraspecific patterns in phenological temperature sensitivity across the multicontinental range of six herbaceous plant species.
View Article and Find Full Text PDFCommunity science image libraries offer a massive, but largely untapped, source of observational data for phenological research. The iNaturalist platform offers a particularly rich archive, containing more than 49 million verifiable, georeferenced, open access images, encompassing seven continents and over 278,000 species. A critical limitation preventing scientists from taking full advantage of this rich data source is labor.
View Article and Find Full Text PDFPremise: We developed a novel low-cost method to visually phenotype belowground structures in the plant rhizosphere. We devised the method introduced here to address the difficulties encountered growing plants in seed germination pouches for long-term experiments and the high cost of other mini-rhizotron alternatives.
Methods And Results: The method described here took inspiration from homemade ant farms commonly used as an educational tool in elementary schools.