Publications by authors named "Rachel A Liberatore"

Article Synopsis
  • Electroporation (EP) is an effective non-viral method for delivering plasmids, but improving transfection efficiency in living organisms is still challenging.
  • The study highlights how the enzyme hyaluronidase enhances DNA transfer efficiency by breaking down hyaluronic acid, leading to a 2- to 3-fold improvement in plasmid distribution within skeletal muscle.
  • Additionally, the timing of hyaluronidase treatment has minimal impact on serum protein levels from delivered DNA, and bioimpedance measurements help optimize electroporation parameters for better outcomes in animal models.
View Article and Find Full Text PDF

Gene therapy and its role in the medical field have evolved drastically in recent decades. Studies aim to define DNA-based medicine as well as encourage innovation and the further development of novel approaches. Gene therapy has been established as an alternative approach to treat a variety of diseases.

View Article and Find Full Text PDF

Since the first approval of monoclonal antibodies by the United States Food and Drug Administration (FDA) in 1986, therapeutic antibodies have become one of the predominant classes of drugs in oncology and immunology. Despite their natural function in contributing to antiviral immunity, antibodies as drugs have only more recently been thought of as tools for combating infectious diseases. Passive immunization, or the delivery of the products of an immune response, offers near-immediate protection, unlike the active immune processes triggered by traditional vaccines, which rely on the time it takes for the host's immune system to develop an effective defense.

View Article and Find Full Text PDF

The foamy viruses (FV) or spumaviruses are an ancient subfamily of retroviruses that infect a variety of vertebrates. FVs are endemic, but apparently apathogenic, in modern non-human primates. Like other retroviruses, FV replication is inhibited by type-I interferon (IFN).

View Article and Find Full Text PDF

With increasing frequency, humans are facing outbreaks of emerging infectious diseases (EIDs) with the potential to cause significant morbidity and mortality. In the most extreme instances, such outbreaks can become pandemics, as we are now witnessing with COVID-19. According to the World Health Organization, this new disease, caused by the novel coronavirus SARS-CoV-2, has already infected more than 10 million people worldwide and led to 499,913 deaths as of 29 June, 2020.

View Article and Find Full Text PDF

The HIV-1 envelope (Env) undergoes conformational changes during infection. Broadly neutralizing antibodies (bNAbs) are typically isolated by using soluble Env trimers, which do not capture all Env states. To address these limitations, we devised a vesicular stomatitis virus (VSV)-based probe to display membrane-embedded Env trimers and isolated five bNAbs from two chronically infected donors, M4008 and M1214.

View Article and Find Full Text PDF

Numerous challenges have impeded HIV-1 vaccine development. Among these is the lack of a convenient small animal model in which to study antibody elicitation and efficacy. We describe a chimeric Rhabdo-Immunodeficiency virus (RhIV) murine model that recapitulates key features of HIV-1 entry, tropism and antibody sensitivity.

View Article and Find Full Text PDF

Curing HIV infection has been impossible, with the exception of the "Berlin Patient." Martinez-Navio et al. (2019) in Miami herein present a rare monkey whose virus was controlled for >3 years after a single genetic intervention that led to persistent production of HIV-neutralizing antibodies in vivo.

View Article and Find Full Text PDF

The relative contributions of cell-free virion circulation and direct cell-to-cell transmission to retroviral dissemination and pathogenesis are unknown. Tetherin/Bst2 is an antiviral protein that blocks enveloped virion release into the extracellular milieu but may not inhibit cell-to-cell virus transmission. We developed live-cell imaging assays which show that tetherin does not affect Moloney murine leukemia virus (MoMLV) spread, and only minimally affects vesicular stomatitis virus (VSV) spread, to adjacent cells in a monolayer.

View Article and Find Full Text PDF

Tetherin/BST-2 is a host restriction factor that could directly inhibit retroviral particle release by tethering nascent virions to the plasma membrane. However, the immunological impact of Tetherin during retrovirus infection remains unknown. We now show that Tetherin influences antiretroviral cell-mediated immune responses.

View Article and Find Full Text PDF

SAMHD1 is a host restriction factor for human immunodeficiency virus 1 (HIV-1) in cultured human cells. SAMHD1 mutations cause autoimmune Aicardi-Goutières syndrome and are found in cancers including chronic lymphocytic leukaemia. SAMHD1 is a triphosphohydrolase that depletes the cellular pool of deoxynucleoside triphosphates, thereby preventing reverse transcription of retroviral genomes.

View Article and Find Full Text PDF

Tetherin (Bst-2 CD317) is a cell-surface protein whose expression is induced by IFNα. Although tetherin expression causes the retention of retrovirus particles on the surface of infected cells, it is not known whether tetherin inhibits retroviral replication or pathogenesis in vivo. Mutation of tetherin antagonists often has little effect on retroviral replication in vitro, and, although tetherin can reduce the yield of extracellular viral particles, some studies suggest that tetherin actually enhances direct cell-to-cell viral transmission.

View Article and Find Full Text PDF

Sensing pathogens is an essential first step in the initiation of a host response to infection. In this issue of Immunity, Kane et al. (2011) used mouse models to demonstrate that Toll-like receptor 7 is required for the generation of an antibody response to infection by retroviruses.

View Article and Find Full Text PDF

The c-abl proto-oncogene encodes a nonreceptor tyrosine kinase involved in many cellular processes, including signaling from growth factor and antigen receptors, remodeling the cytoskeleton, and responding to DNA damage and oxidative stress. Many downstream pathways are affected by c-Abl. Elevated c-Abl kinase activity can inhibit NF-kappaB activity by stabilizing the inhibitory protein IkappaB alpha, raising the possibility that c-Abl-deficient cells might have increased NF-kappaB activity.

View Article and Find Full Text PDF

A role for c-Abl in B cell development and signaling has been suggested by previous work showing that c-Abl-deficient mice have defects in bone marrow B cell development and that c-Abl-deficient B cells are hypoproliferative in response to antigen receptor stimulation. Here we show that in addition to defects in early B cell development, c-Abl-deficient mice have defects in peripheral B cell development, including reduced percentages of peritoneal B-1 cells as well as transitional and marginal zone B cells in the spleen. It has been shown that c-Abl kinase activity increases upon B cell receptor (BCR) stimulation and that one of the targets of tyrosine phosphorylation by c-Abl is CD19.

View Article and Find Full Text PDF