Circadian rhythms are ∼24 h fluctuations in physiology and behavior that are synchronized with the light-dark cycle. The circadian system ensures homeostatic balance by regulating multiple systems that respond to environmental stimuli including stress systems. In rats, acute exposure to a series of uncontrollable tailshocks (inescapable stress, IS) produces an anxiety and depression-like phenotype.
View Article and Find Full Text PDFSynchronizing circadian (24 h) rhythms in physiology and behavior with the environmental light-dark cycle is critical for maintaining optimal health. Dysregulation of the circadian system increases susceptibility to numerous pathological conditions including major depressive disorder. Stress is a common etiological factor in the development of depression and the circadian system is highly interconnected to stress-sensitive neurotransmitter systems such as the serotonin (5-hydroxytryptamine, 5-HT) system.
View Article and Find Full Text PDFIn modern 24 h society, circadian disruption is pervasive, arising from night shift work, air travel across multiple time zones, irregular sleep schedules, and exposure to artificial light at night. Disruption of the circadian system is associated with many adverse health consequences, including mood disorders. Here we investigate whether inducing circadian misalignment using a phase advance protocol interferes with the ability to cope with a stressor, thereby increasing susceptibility to the negative consequences of stress.
View Article and Find Full Text PDFExposure to stressors can enhance neuroinflammatory responses, and both stress and neuroinflammation are predisposing factors in the development of psychiatric disorders. Females suffer disproportionately more from several psychiatric disorders, yet stress-induced changes in neuroinflammation have primarily been studied in males. Here we tested whether exposure to inescapable tail shock sensitizes or 'primes' neuroinflammatory responses in male and female rats.
View Article and Find Full Text PDFPsychoneuroendocrinology
April 2016
Circadian rhythms are endogenous cycles of physiology and behavior that align with the daily rotation of the planet and resulting light-dark cycle. The circadian system ensures homeostatic balance and regulates many aspects of physiology, including the stress response and susceptibility to and/or severity of stress-related sequelae. Both acute and chronic stressors amplify neuroinflammatory responses to a subsequent immune challenge, however it is not known whether circadian timing of the stressor regulates the priming response.
View Article and Find Full Text PDFPrevious studies have established a role for N-methyl-D-aspartate receptor (NMDAR) containing the GluN2B subunit in efficient learning behavior on a variety of tasks. Recent findings have suggested that NMDAR on GABAergic interneurons may underlie the modulation of striatal function necessary to balance efficient action with cortical excitatory input. Here we investigated how loss of GluN2B-containing NMDAR on GABAergic interneurons altered corticostriatal-mediated associative learning.
View Article and Find Full Text PDFBehaviorally controllable stressors confer protection from the neurochemical and behavioral consequences of future uncontrollable stressors, a phenomenon termed "behavioral immunization". Recent data implicate protein synthesis within the ventromedial prefrontal cortex (mPFC) as critical to behavioral immunization. Adult, male Sprague-Dawley rats were exposed to a series of controllable tailshocks and 1 week later to uncontrollable tailshocks, followed 24 h later by social exploration and shuttlebox escape tests.
View Article and Find Full Text PDFThe neural and genetic factors underlying chronic tolerance to alcohol are currently unclear. The GluN2A N-methyl-D-aspartate receptors (NMDAR) subunit and the NMDAR-anchoring protein PSD-95 mediate acute alcohol intoxication and represent putative mechanisms mediating tolerance. We found that chronic intermittent ethanol exposure (CIE) did not produce tolerance [loss of righting reflex (LORR)] or withdrawal-anxiety in C57BL/6J, GluN2A or PSD-95 knockout mice assayed 2-3 days later.
View Article and Find Full Text PDFA choice that reliably produces a preferred outcome can be automated to liberate cognitive resources for other tasks. Should an outcome become less desirable, behavior must adapt in parallel or it becomes perseverative. Corticostriatal systems are known to mediate choice learning and flexibility, but the molecular mechanisms of these processes are not well understood.
View Article and Find Full Text PDF