Publications by authors named "Rachayata Dharmat"

Single-cell RNA-seq is a powerful tool in decoding the heterogeneity in complex tissues by generating transcriptomic profiles of the individual cell. Here, we report a single-nuclei RNA-seq (snRNA-seq) transcriptomic study on human retinal tissue, which is composed of multiple cell types with distinct functions. Six samples from three healthy donors are profiled and high-quality RNA-seq data is obtained for 5873 single nuclei.

View Article and Find Full Text PDF

Single-cell RNA sequencing (scRNA-seq) is an emerging technology that can address the challenge of cellular heterogeneity. In the last decade, the cost per cell has been dramatically reduced, and the throughput has been increased by 10-fold. Like many other tissues, the retina is highly heterogeneous with an estimated of over 100 subtypes of neuronal cells.

View Article and Find Full Text PDF

Rod and cone photoreceptors are light-sensing cells in the human retina. Rods are dominant in the peripheral retina, whereas cones are enriched in the macula, which is responsible for central vision and visual acuity. Macular degenerations affect vision the most and are currently incurable.

View Article and Find Full Text PDF

Photoreceptor-specific ciliopathies often affect a structure that is considered functionally homologous to the ciliary transition zone (TZ) called the connecting cilium (CC). However, it is unclear how mutations in certain ciliary genes disrupt the photoreceptor CC without impacting the primary cilia systemically. By applying stochastic optical reconstruction microscopy technology in different genetic models, we show that the CC can be partitioned into two regions: the proximal CC (PCC), which is homologous to the TZ of primary cilia, and the distal CC (DCC), a photoreceptor-specific extension of the ciliary TZ.

View Article and Find Full Text PDF

The retinal pigment epithelium (RPE) transports nutrients and metabolites between the microvascular bed that maintains the outer retina and photoreceptor neurons. The RPE removes photoreceptor outer segments (POS) by receptor-mediated phagocytosis, a process that peaks in the morning. Uptake and degradation of POS initiates signaling cascades in the RPE.

View Article and Find Full Text PDF

Purpose: IFT81, a core component of the IFT-B complex, involved in the bidirectional transport of ciliary proteins, has been recently implicated in syndromic ciliopathies. However, none of the IFT-B core complex proteins have been associated with nonsyndromic retinal dystrophies. Given the importance of ciliary transport in photoreceptor function and structural maintenance, we sought to investigate the impact of IFT (intraflagellar transport) mutations in nonsyndromic retinopathies.

View Article and Find Full Text PDF

Pre-mRNA splicing factors play a fundamental role in regulating transcript diversity both temporally and spatially. Genetic defects in several spliceosome components have been linked to a set of non-overlapping spliceosomopathy phenotypes in humans, among which skeletal developmental defects and non-syndromic retinitis pigmentosa (RP) are frequent findings. Here we report that defects in spliceosome-associated protein CWC27 are associated with a spectrum of disease phenotypes ranging from isolated RP to severe syndromic forms.

View Article and Find Full Text PDF

Purpose: Leber congenital amaurosis (LCA) is an early-onset form of retinal degeneration. Six of the 22 known LCA genes encode photoreceptor ciliary proteins. Despite the identification of 22 LCA genes, the genetic basis of ~30% of LCA patients remains unknown.

View Article and Find Full Text PDF