Publications by authors named "Rachagani Satyanarayana"

Background: There remains a need for animal models with human translatability in lung cancer (LC) research. Findings in pigs have high impact on humans due to similar anatomy and physiology. We present the characterization of a bronchoscopically-induced LC model in Oncopigs carrying inducible KRAS and TP53 mutations.

View Article and Find Full Text PDF

The heterogeneity of tumors and the lack of effective therapies have resulted in triple-negative breast cancer (TNBC) exhibiting the least favorable outcomes among breast cancer subtypes. TNBC is characterized by its aggressive nature, often leading to high rates of relapse, metastasis, and mortality. Niclosamide (Nic), an Food and Drug Administration-approved anthelmintic drug, has been repurposed for cancer treatment; however, its application for TNBC is hindered by significant challenges, including strong hydrophobicity, poor aqueous solubility, and low bioavailability.

View Article and Find Full Text PDF

Cancer ablation with pulsed electric fields (PEFs) involves the delivery of high-voltage, short-duration electrical pulses that destabilize tumor cells, leading to cellular death. Unlike most conventional ablation technologies, PEF ablation is non-thermal, allowing for safe and targeted energy delivery to the tumor without damaging surrounding tissue and critical structures. PEFs allow for specific dosing, predictable treatment zones, and preservation of the extracellular matrix and adjacent vascular tissues.

View Article and Find Full Text PDF
Article Synopsis
  • * Twelve Oncopigs were injected with a gene-inducing virus through bronchoscopy, resulting in significant cancer development observed via CT scans and confirmed through various analysis methods.
  • * The Oncopig model showed a high similarity in cancer gene expression patterns to human lung cancer, suggesting it could be a valuable tool for translating research findings into human clinical applications.
View Article and Find Full Text PDF

Luciferase (luc) bioluminescence (BL) is the most used light-emitting protein that has been engineered to be expressed in multiple cancer cell lines, allowing for the detection of tumor nodules in vivo as it can penetrate most tissues. The goal of this study was to develop an oncolytic adenovirus (OAd)-resistant human triple-negative breast cancer (TNBC) that could express luciferase. Thus, when combining an OAd with chemotherapies or targeted therapies, we would be able to monitor the ability of these compounds to enhance OAd antitumor efficacy using BL in real time.

View Article and Find Full Text PDF

Telomere-to-telomere (T2T) assemblies reveal new insights into the structure and function of the previously 'invisible' parts of the genome and allow comparative analyses of complete genomes across entire clades. We present here an open collaborative effort, termed the 'Ruminant T2T Consortium' (RT2T), that aims to generate complete diploid assemblies for numerous species of the Artiodactyla suborder Ruminantia to examine chromosomal evolution in the context of natural selection and domestication of species used as livestock.

View Article and Find Full Text PDF

Purpose: Systemic treatments given to patients with non-small cell lung cancer (NSCLC) are often ineffective due to drug resistance. In the present study, we investigated patient-derived tumor organoids (PDTO) and matched tumor tissues from surgically treated patients with NSCLC to identify drug repurposing targets to overcome resistance toward standard-of-care platinum-based doublet chemotherapy.

Experimental Design: PDTOs were established from 10 prospectively enrolled patients with non-metastatic NSCLC from resected tumors.

View Article and Find Full Text PDF

Pigs are playing an increasingly vital role as translational biomedical models for studying human pathophysiology. The annotation of the pig genome was a huge step forward in translatability of pigs as a biomedical model for various human diseases. Similarities between humans and pigs in terms of anatomy, physiology, genetics, and immunology have allowed pigs to become a comprehensive preclinical model for human diseases.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) remains highly lethal due to limited therapeutic options and expensive/burdensome drug discovery processes. Utilizing genomic-data-driven Connectivity Mapping (CMAP) to identify a drug closer to real-world PC targeting may improve pancreatic cancer (PC) patient outcomes. Initially, we mapped CMAP data to gene expression from 106 PC patients, identifying nine negatively connected drugs.

View Article and Find Full Text PDF

Cancer remains a leading cause of morbidity and mortality, and a paradigm shift is needed to fundamentally revisit drug development efforts. Pigs share close similarities to humans and may serve as an alternative model. Recently, a transgenic 'Oncopig' line has been generated to induce solid tumors with organ specificity, opening the potential of Oncopigs as a platform for developing novel therapeutic regimens.

View Article and Find Full Text PDF

Gut microbiota plays a crucial role in inflammatory bowel diseases (IBD) and can potentially prevent IBD through microbial-derived metabolites, making it a promising therapeutic avenue. Recent evidence suggests that despite an unclear underlying mechanism, red cabbage juice (RCJ) alleviates Dextran Sodium Sulfate (DSS)-induced colitis in mice. Thus, the study aims to unravel the molecular mechanism by which RCJ modulates the gut microbiota to alleviate DSS-induced colitis in mice.

View Article and Find Full Text PDF

Gut microbiota plays a crucial role in inflammatory bowel disease (IBD) and has therapeutic benefits. Thus, targeting the gut microbiota is a promising therapeutic approach for IBD treatment. We recently found that red cabbage juice (RCJ) ameliorates dextran sulfate sodium (DSS)-induced colitis in mice.

View Article and Find Full Text PDF

Aberrantly expressed onco-mucin 16 (MUC16) and its post-cleavage generated surface tethered carboxy-terminal (MUC16-Cter) domain are strongly associated with poor prognosis and lethality of pancreatic (PC) and non-small cell lung cancer (NSCLC). To date, most anti-MUC16 antibodies are directed towards the extracellular domain of MUC16 (CA125), which is usually cleaved and shed in the circulation hence obscuring antibody accessibility to the cancer cells. Herein, we establish the utility of targeting a post-cleavage generated, surface-tethered oncogenic MUC16 carboxy-terminal (MUC16-Cter) domain by using a novel chimeric antibody in human IgG1 format, ch5E6, whose epitope expression directly correlates with disease severity in both cancers.

View Article and Find Full Text PDF

Due to the severe toxicity posed by chemotherapeutic drugs, adjuvant nutritional intervention has gained increased attention in the treatment of pancreatic cancer (PC). Amino acid (AA) metabolism is aberrantly regulated in PC and circulating histidine (His) levels are low in PC patients. We hypothesized that His uptake and/or metabolism is dysregulated in PC and that combining His with gemcitabine (Gem), a drug used in the treatment of PC, will enhance the anti-cancer effects of Gem.

View Article and Find Full Text PDF

The human gut microbiota can be potentially disrupted due to exposure of various environmental contaminants, including pesticides. These contaminants enter into non-target species in multiple ways and cause potential health risks. The gut microbiota-derived metabolites have a significant role in maintaining the host's health by regulating metabolic homeostasis.

View Article and Find Full Text PDF

The stellate ganglion (SG) is a part of the sympathetic nervous system that has important regulatory effects on several human tissues and organs in the upper body. SG block and intervention have been clinically and preclinically implemented to manage chronic pain in the upper extremities, neck, head, and upper chest as well as chronic heart failure. However, there has been very limited effort to develop and investigate polymer-based drug delivery systems for local delivery to the SG.

View Article and Find Full Text PDF

Mucin4 (MUC4) appears early during pancreatic intraepithelial neoplasia-1 (PanIN1), coinciding with the expression of epidermal growth factor receptor-1 (EGFR). The EGFR signaling is required for the onset of Kras-driven pancreatic ductal adenocarcinoma (PDAC); however, the players and mechanisms involved in sustained EGFR signaling in early PanIN lesions remain elusive. We generated a unique Esai-CRISPR-based Muc4 conditional knockout murine model to evaluate its effect on PDAC pathology.

View Article and Find Full Text PDF

MUC16, membrane-bound mucin, plays an oncogenic role in pancreatic ductal adenocarcinoma (PDAC). However, the pathological role of MUC16 in the PDAC progression, tumor microenvironment, and metastasis in cooperation with Kras and Trp53 mutations remains unknown. Deletion of Muc16 with activating mutations Kras and Trp53 in mice significantly decreased progression and prolonged overall survival in Kras; Trp53; Pdx-1-Cre; Muc16 (KPCM) and Kras; Pdx-1-Cre; Muc16 (KCM), as compared to Kras; Trp53; Pdx-1-Cre (KPC) and Kras; Pdx-1-Cre (KC) mice, respectively.

View Article and Find Full Text PDF

Delivery of therapeutic agents in pancreatic cancer (PC) is impaired due to its hypovascular and desmoplastic tumor microenvironment. The Endothelin (ET)-axis is the major regulator of vasomotor tone under physiological conditions and is highly upregulated in multiple cancers. We investigated the effect of dual endothelin receptor antagonist bosentan on perfusion and macromolecular transport in a PC cell-fibroblast co-implantation tumor model using Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI).

View Article and Find Full Text PDF

Hedgehog (Hh) signaling is evolutionarily conserved and plays an instructional role in embryonic morphogenesis, organogenesis in various animals, and the central nervous system organization. Multiple feedback mechanisms dynamically regulate this pathway in a spatiotemporal and context-dependent manner to confer differential patterns in cell fate determination. Hh signaling is complex due to canonical and non-canonical mechanisms coordinating cell-cell communication.

View Article and Find Full Text PDF

Mucins are components of the mucus layer overlying the intestinal epithelial cells, which maintains physiological homeostasis. Altered mucin expression is associated with disease progression. Expression of MUC4 decreases in colorectal cancer (CRC); however, its functional role and implications in the intestinal pathology in CRC are not studied well.

View Article and Find Full Text PDF

Pancreatic cancer (PC) is characterized by metabolic deregulations that often manifest as deviations in metabolite levels and aberrations in their corresponding metabolic genes across the clinical specimens and preclinical PC models. Cholesterol is one of the critical metabolites supporting PC, synthesized or acquired by PC cells. Nevertheless, the significance of the de novo cholesterol synthesis pathway has been controversial in PC, indicating the need to reassess this pathway in PC.

View Article and Find Full Text PDF
Article Synopsis
  • Radiation therapy for pancreatic ductal adenocarcinoma (PDAC) often fails due to radioresistance, linked to cholesterol biosynthesis (CBS) and specifically, the enzyme farnesyl diphosphate synthase (FDPS).
  • Inhibition of FDPS using zoledronic acid (Zol) enhanced the effectiveness of radiation therapy and activated immune cells in both human and mouse models.
  • Results showed that targeting FDPS increased radiosensitivity, improved survival rates, and altered immune responses, suggesting Zol as a promising radiosensitizer and immunomodulator for PDAC treatment.
View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with high mortality, poor prognosis, and palliative treatments, due to the rapid upregulation of alternative compensatory pathways and desmoplastic reaction. miRNAs, small non-coding RNAs, have been recently identified as key players regulating cancer pathogenesis. Dysregulated miRNAs are associated with molecular pathways involved in tumor development, metastasis, and chemoresistance in PDAC, as well as other cancers.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiona6qjklupkq6064a9mvbifap5qh1db8oi): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once