Publications by authors named "Rachael Nolan"

With large wildfires becoming more frequent, we must rapidly learn how megafires impact biodiversity to prioritize mitigation and improve policy. A key challenge is to discover how interactions among fire-regime components, drought and land tenure shape wildfire impacts. The globally unprecedented 2019-2020 Australian megafires burnt more than 10 million hectares, prompting major investment in biodiversity monitoring.

View Article and Find Full Text PDF
Article Synopsis
  • Oral health is essential for quality of life, and this research focuses on understanding oral health practices and beliefs in the Rorya district of Tanzania, identifying barriers to care.
  • The study involved intraoral examinations and interviews with a sample of 139 participants, revealing that females had higher Decayed Missing and Filled Teeth (DMFT) and Oral Health-Related Quality of Life (OHRQoL) scores, while males showed higher periodontal issues.
  • Findings indicate a need for improved oral health maintenance in the community, emphasizing that disparities in access to resources contribute to poor oral health outcomes.
View Article and Find Full Text PDF

Predicting how plants respond to drought requires an understanding of how physiological mechanisms and drought response strategies occur, as these strategies underlie rates of gas exchange and productivity. We assessed the response of 11 plant traits to repeated experimental droughts in four co-occurring species of central Australia. The main goals of this study were to: (i) compare the response to drought between species; (ii) evaluate whether plants acclimated to repeated drought; and (iii) examine the degree of recovery in leaf gas exchange after cessation of drought.

View Article and Find Full Text PDF

Understanding the biophysical limitations on forest carbon across diverse ecological regions is crucial for accurately assessing and managing forest carbon stocks. This study investigates the role of climate and disturbance on the spatial variation of two key forest carbon pools: aboveground carbon (AGC) and soil organic carbon (SOC). Using plot-level carbon pool estimates from Nepal's national forest inventory and structural equation modelling, we explore the relationship of forest carbon stocks to broad-scale climatic water and energy availability and fine-scale terrain and disturbance.

View Article and Find Full Text PDF

Traits with intuitive names, a clear scope and explicit description are essential for all trait databases. The lack of unified, comprehensive, and machine-readable plant trait definitions limits the utility of trait databases, including reanalysis of data from a single database, or analyses that integrate data across multiple databases. Both can only occur if researchers are confident the trait concepts are consistent within and across sources.

View Article and Find Full Text PDF

Globe-LFMC 2.0, an updated version of Globe-LFMC, is a comprehensive dataset of over 280,000 Live Fuel Moisture Content (LFMC) measurements. These measurements were gathered through field campaigns conducted in 15 countries spanning 47 years.

View Article and Find Full Text PDF
Article Synopsis
  • Changes in wildfire patterns due to climate change pose significant risks to ecosystems and society, but predicting these changes is complicated by climate-vegetation-fire interactions.
  • Researchers identified 18 distinct fire regions (pyroregions) in Australia by analyzing satellite data, revealing diverse fire characteristics across different climates.
  • Projections indicate that by the end of the century, a significant portion of these pyroregions could shift beyond their historical climate niches, particularly in tropical and hot-arid areas, leading to potentially unprecedented fire regimes.
View Article and Find Full Text PDF

Comprehensive forest carbon accounting requires reliable estimation of soil organic carbon (SOC) stocks. Despite being an important carbon pool, limited information is available on SOC stocks in global forests, particularly for forests in mountainous regions, such as the Central Himalayas. The availability of consistently measured new field data enabled us to accurately estimate forest soil organic carbon (SOC) stocks in Nepal, addressing a previously existing knowledge gap.

View Article and Find Full Text PDF

Wildfires are a global crisis, but current fire models fail to capture vegetation response to changing climate. With drought and elevated temperature increasing the importance of vegetation dynamics to fire behavior, and the advent of next generation models capable of capturing increasingly complex physical processes, we provide a renewed focus on representation of woody vegetation in fire models. Currently, the most advanced representations of fire behavior and biophysical fire effects are found in distinct classes of fine-scale models and do not capture variation in live fuel (i.

View Article and Find Full Text PDF

In Australia, the proportion of forest area that burns in a typical fire season is less than for other vegetation types. However, the 2019-2020 austral spring-summer was an exception, with over four times the previous maximum area burnt in southeast Australian temperate forests. Temperate forest fires have extensive socio-economic, human health, greenhouse gas emissions, and biodiversity impacts due to high fire intensities.

View Article and Find Full Text PDF

In 2019, south-eastern Australia experienced its driest and hottest year on record, resulting in massive canopy dieback events in eucalypt dominated forests. A subsequent period of high precipitation in 2020 provided a rare opportunity to quantify the impacts of extreme drought and consequent recovery. We quantified canopy health and hydraulic impairment (native percent loss of hydraulic conductivity, PLC) of 18 native tree species growing at 15 sites that were heavily impacted by the drought both during and 8-10 months after the drought.

View Article and Find Full Text PDF

Levels of fire activity and severity that are unprecedented in the instrumental record have recently been observed in forested regions around the world. Using a large sample of daily fire events and hourly climate data, here we show that fire activity in all global forest biomes responds strongly and predictably to exceedance of thresholds in atmospheric water demand, as measured by maximum daily vapour pressure deficit. The climatology of vapour pressure deficit can therefore be reliably used to predict forest fire risk under projected future climates.

View Article and Find Full Text PDF

"Least-cost theory" posits that C plants should balance rates of photosynthetic water loss and carboxylation in relation to the relative acquisition and maintenance costs of resources required for these activities. Here we investigated the dependency of photosynthetic traits on climate and soil properties using a new Australia-wide trait dataset spanning 528 species from 67 sites. We tested the hypotheses that plants on relatively cold or dry sites, or on relatively more fertile sites, would typically operate at greater CO drawdown (lower ratio of leaf internal to ambient CO , C :C ) during light-saturated photosynthesis, and at higher leaf N per area (N ) and higher carboxylation capacity (V ) for a given rate of stomatal conductance to water vapour, g .

View Article and Find Full Text PDF
Article Synopsis
  • Mistletoes contribute to tree mortality, especially during droughts, by excessively using water from their host trees.
  • In Australia, expanding mistletoe distributions are straining eucalypt species already stressed by record heat and drought, leading to increased risks of hydraulic failure.
  • The study found that infected branches showed significantly higher water loss on hot days, negatively affecting the water potential of host trees and increasing the likelihood of carbon starvation in one eucalyptus species compared to another.
View Article and Find Full Text PDF

Record-breaking fire seasons in many regions across the globe raise important questions about plant community responses to shifting fire regimes (i.e., changing fire frequency, severity and seasonality).

View Article and Find Full Text PDF

Crowdsourced psychological and other biobehavioral research using platforms like Amazon's Mechanical Turk (MTurk) is increasingly common - but has proliferated more rapidly than studies to establish data quality best practices. Thus, this study investigated whether outcome scores for three common screening tools would be significantly different among MTurk workers who were subject to different sets of quality control checks. We conducted a single-stage, randomized controlled trial with equal allocation to each of four study arms: Arm 1 (Control Arm), Arm 2 (Bot/VPN Check), Arm 3 (Truthfulness/Attention Check), and Arm 4 (Stringent Arm - All Checks).

View Article and Find Full Text PDF

Eastern Australia was subject to its hottest and driest year on record in 2019. This extreme drought resulted in massive canopy die-back in eucalypt forests. The role of hydraulic failure and tree size on canopy die-back in three eucalypt tree species during this drought was examined.

View Article and Find Full Text PDF

The circadian clock is a molecular timer of metabolism that affects the diurnal pattern of stomatal conductance (), amongst other processes, in a broad array of plant species. The function of circadian regulation remains unknown and here, we test whether circadian regulation helps to optimize diurnal variations in stomatal conductance. We subjected bean () and cotton () canopies to fixed, continuous environmental conditions of photosynthetically active radiation, temperature, and vapour pressure deficit (free-running conditions) over 48 h.

View Article and Find Full Text PDF
Article Synopsis
  • Plant traits, which include various characteristics like morphology and physiology, play a crucial role in how plants interact with their environment and impact ecosystems, making them essential for research in areas like ecology, biodiversity, and environmental management.
  • The TRY database, established in 2007, has become a vital resource for global plant trait data, promoting open access and enabling researchers to identify and fill data gaps for better ecological modeling.
  • Although the TRY database provides extensive data, there are significant areas lacking consistent measurements, particularly for continuous traits that vary among individuals in their environments, presenting a major challenge that requires collaboration and coordinated efforts to address.
View Article and Find Full Text PDF

As the ratio of carbon uptake to water use by vegetation, water-use efficiency (WUE) is a key ecosystem property linking global carbon and water cycles. It can be estimated in several ways, but it is currently unclear how different measures of WUE relate, and how well they each capture variation in WUE with soil moisture availability. We evaluated WUE in an Acacia-dominated woodland ecosystem of central Australia at various spatial and temporal scales using stable carbon isotope analysis, leaf gas exchange and eddy covariance (EC) fluxes.

View Article and Find Full Text PDF