Antibiotic therapy alters bacterial abundance and metabolism in the gut microbiome, leading to dysbiosis and opportunistic infections. () is both a commensal in the gut and an opportunistic pathogen in other body sites. Past work has shown that responds to β-lactam treatment differently depending on the metabolic environment both and .
View Article and Find Full Text PDFMicrobial metabolism is a major determinant of antibiotic susceptibility. Environmental conditions that modify metabolism, notably oxygen availability and redox potential, can directly fine-tune susceptibility to antibiotics. Despite this, relatively few studies have discussed these modifications within the gastrointestinal tract and their implication on drug activity and the off-target effects of antibiotics in the gut.
View Article and Find Full Text PDFObjective: Calcification of atherosclerotic plaque is traditionally associated with increased cardiovascular event risk; however, recent studies have found increased calcium density to be associated with more stable disease. 3-hydroxy-3-methylglutaryl coenzymeA reductase inhibitors or statins reduce cardiovascular events. Invasive clinical studies have found that statins alter both the lipid and calcium composition of plaque but the molecular mechanisms of statin-mediated effects on plaque calcium composition remain unclear.
View Article and Find Full Text PDFAlthough antibiotics disturb the structure of the gut microbiota, factors that modulate these perturbations are poorly understood. Bacterial metabolism is an important regulator of susceptibility in vitro and likely plays a large role within the host. We applied a metagenomic and metatranscriptomic approach to link antibiotic-induced taxonomic and transcriptional responses within the murine microbiome.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2018
Cell death and inflammation are intimately linked during infection. Pathogenic inhibits the MAP kinase TGFβ-activated kinase 1 (TAK1) via the effector YopJ, thereby silencing cytokine expression while activating caspase-8-mediated cell death. Here, using in corroboration with costimulation of lipopolysaccharide and (5Z)-7-Oxozeaenol, a small-molecule inhibitor of TAK1, we show that caspase-8 activation during TAK1 inhibition results in cleavage of both gasdermin D (GSDMD) and gasdermin E (GSDME) in murine macrophages, resulting in pyroptosis.
View Article and Find Full Text PDF