Chem Commun (Camb)
August 2021
A Ru(ii) intercalating complex capped with a Mn(i) photoCORM allows for a new mode of DNA intercalator delivery. The steric bulk of the Mn(i) photoCORM inhibits intercalation in the dark, and visible light irradiation (470 nm) dissociates the photoCORM, allowing for DNA intercalation of the Ru(ii) complex.
View Article and Find Full Text PDFTwo diimine-bridged Ru(II),Mn(I) complexes with a [(bpy)Ru(BL)Mn(CO)Br] architecture, where bpy = 2,2'-bipyridine and BL = 2,3-bis(2-pyridyl)pyrazine (dpp; Ru(dpp)Mn) or 2,2'-bipyrimidine (bpm; Ru(bpm)Mn), were designed to both dissociate multiple equivalents of CO and produce O when irradiated with visible light. Analysis of the complexes by Fourier transform infrared (FTIR) spectroscopy and cyclic voltammetry suggest a stronger π-accepting ability for bpm compared to that of dpp. Both complexes absorb light throughout the UV and visible regions with lowest energy absorption bands comprising overlapping Ru(dπ)→BL(π*) and Mn(dπ)→BL(π*) singlet metal-to-ligand charge transfer (MLCT) and Br(p)→dpp(π*) singlet halide-to-ligand charge transfer (XLCT) transitions.
View Article and Find Full Text PDF