Publications by authors named "Rachael M Tomb"

Whole genome sequencing of SARS-CoV-2 has occurred at an unprecedented scale, and can be exploited for characterising outbreak risks at the fine-scale needed to inform control strategies. One setting at continued risk of COVID-19 outbreaks are higher education institutions, associated with student movements at the start of term, close living conditions within residential halls, and high social contact rates. Here we analysed SARS-CoV-2 whole genome sequences in combination with epidemiological data to investigate a large cluster of student cases associated with University of Glasgow accommodation in autumn 2020, Scotland.

View Article and Find Full Text PDF

In transfusion medicine, bacterial contamination can occur in ex vivo stored blood plasma, and there are continued efforts to improve blood safety and reduce the risk of transfusion-transmitted infections. Visible 405-nm violet-blue light has demonstrated potential for in situ pathogen reduction in ex vivo stored plasma and platelet concentrates. This study investigates the broad-spectrum antibacterial efficacy and compatibility potential of 405-nm light for treatment of blood plasma.

View Article and Find Full Text PDF

Bacterial contamination of stored platelets is a cause of transfusion-transmitted infection. Violet-blue 405 nm light has recently demonstrated efficacy in reducing the bacterial burden in blood plasma, and its operational benefits such as non-ionizing nature, penetrability, and non-requirement for photosensitizing agents, provide a unique opportunity to develop this treatment for treatment of stored platelets as a tool for bacterial reduction. Sealed bags of platelet concentrates, seeded with low-level contamination, were 405 nm light-treated (3-10 mWcm) up to 8 h.

View Article and Find Full Text PDF

Antimicrobial violet-blue light is an emerging technology designed for enhanced clinical decontamination and treatment applications, due to its safety, efficacy and ease of use. This systematized review was designed to compile the current knowledge on the antimicrobial efficacy of 380-480 nm light on a range of health care and food-related pathogens including vegetative bacteria, bacterial endospores, fungi and viruses. Data were compiled from 79 studies, with the majority focussing on wavelengths in the region of 405 nm.

View Article and Find Full Text PDF

Background: Antimicrobial violet-blue light in the region of 405 nm is emerging as an alternative technology for hospital decontamination and clinical treatment. The mechanism of action is the excitation of endogenous porphyrins within exposed microorganisms, resulting in ROS generation, oxidative damage and cell death. Although resistance to 405 nm light is not thought likely, little evidence has been published to support this.

View Article and Find Full Text PDF

The requirement for novel decontamination technologies for use in hospitals is ever present. One such system uses 405 nm visible light to inactivate microorganisms via ROS-generated oxidative damage. Although effective for bacterial and fungal inactivation, little is known about the virucidal effects of 405 nm light.

View Article and Find Full Text PDF

Exposure to narrowband violet-blue light around 405 nm wavelength can induce lethal oxidative damage to bacteria and fungi, however effects on viruses are unknown. As photosensitive porphyrin molecules are involved in the microbicidal inactivation mechanism, and since porphyrins are absent in viruses, then any damaging effects of 405 nm light on viruses might appear unlikely. This study used the bacteriophage ɸC31, as a surrogate for non-enveloped double-stranded DNA viruses, to establish whether 405 nm light can induce virucidal effects.

View Article and Find Full Text PDF