Hundreds of spores of are inhaled daily by human beings, representing a constant, possibly fatal, threat to respiratory health. The small size of spores suggests that interactions with alveolar epithelial cells (AECs) are frequent; thus, we hypothesized that spore uptake by AECs is important for driving fungal killing and susceptibility to -related disease. Using single-cell approaches to measure spore uptake and its outcomes , we demonstrate that spores are internalized and killed by AECs during whole-animal infection.
View Article and Find Full Text PDFMore than 10 million people suffer from lung diseases caused by the pathogenic fungus . The azole class of antifungals represent first line therapeutics for most of these infections however resistance is rising. Identification of novel antifungal targets that, when inhibited, synergise with the azoles will aid the development of agents that can improve therapeutic outcomes and supress the emergence of resistance.
View Article and Find Full Text PDFThe human lung is constantly exposed to Aspergillus fumigatus spores, the most prevalent worldwide cause of fungal respiratory disease. Pulmonary tissue damage is a unifying feature of Aspergillus-related diseases; however, the mechanistic basis of damage is not understood. In the lungs of susceptible hosts, A.
View Article and Find Full Text PDFDamage to the lung epithelium is a unifying feature of disease caused by the saprophytic fungus . However, the mechanistic basis and the regulatory control of such damage is poorly characterized. Previous studies have identified mediated pathogenesis as occurring at early (≤ 16 hours) or late (>16 hours) phases of the fungal interaction with epithelial cells, and respectively involve direct contact with the host cell or the action of soluble factors produced by mature fungal hyphae.
View Article and Find Full Text PDFAspergillus fumigatus is the most important airborne fungal pathogen and allergen of humans causing high morbidity and mortality worldwide. The factors that govern pathogenicity of this organism are multi-factorial and are poorly understood. Molecular tools to dissect the mechanisms of pathogenicity in A.
View Article and Find Full Text PDFAspergillus fumigatus is a human fungal pathogen that can cause devastating pulmonary infections, termed "aspergilloses," in individuals suffering immune imbalances or underlying lung conditions. As rapid adaptation to stress is crucial for the outcome of the host-pathogen interplay, here we investigated the role of the versatile posttranslational modification (PTM) persulfidation for both fungal virulence and antifungal host defense. We show that an A.
View Article and Find Full Text PDFThere is an urgent need to develop novel antifungals to tackle the threat fungal pathogens pose to human health. Here, we have performed a comprehensive characterization and validation of the promising target methionine synthase (MetH). We show that in the absence of this enzymatic activity triggers a metabolic imbalance that causes a reduction in intracellular ATP, which prevents fungal growth even in the presence of methionine.
View Article and Find Full Text PDFThe frequency of antifungal resistance, particularly to the azole class of ergosterol biosynthetic inhibitors, is a growing global health problem. Survival rates for those infected with resistant isolates are exceptionally low. Beyond modification of the drug target, our understanding of the molecular basis of azole resistance in the fungal pathogen Aspergillus fumigatus is limited.
View Article and Find Full Text PDFKey Points: Electrical pacemaking in gastrointestinal muscles is generated by specialized interstitial cells of Cajal that produce the patterns of contractions required for peristalsis and segmentation in the gut. The calcium-activated chloride conductance anoctamin-1 (Ano1) has been shown to be responsible for the generation of pacemaker activity in GI muscles, but this conclusion is established from studies of juvenile animals in which effects of reduced Ano1 on gastric emptying and motor patterns could not be evaluated. Knocking down Ano1 expression using Cre/LoxP technology caused dramatic changes in in gastric motor activity, with disrupted slow waves, abnormal phasic contractions and delayed gastric emptying; modest changes were noted in the small intestine.
View Article and Find Full Text PDF