A phase I trial (NCT03447314; 204686) evaluated the safety and efficacy of GSK1795091, a Toll-like receptor 4 (TLR4) agonist, in combination with immunotherapy (GSK3174998 [anti-OX40 monoclonal antibody], GSK3359609 [anti-ICOS monoclonal antibody], or pembrolizumab) in patients with solid tumors. The primary endpoint was safety; other endpoints included efficacy, pharmacokinetics, and pharmacodynamics (PD). Manufacturing of GSK1795091 formulation was modified during the trial to streamline production and administration, resulting in reduced PD (cytokine) activity.
View Article and Find Full Text PDFAcid sphingomyelinase deficiency (ASMD) is a rare lysosomal storage disorder with heterogeneous clinical manifestations, including hepatosplenomegaly and infiltrative pulmonary disease, and is associated with significant morbidity and mortality. Olipudase alfa (recombinant human acid sphingomyelinase) is an enzyme replacement therapy under development for the non-neurological manifestations of ASMD. We present a quantitative systems pharmacology (QSP) model supporting the clinical development of olipudase alfa.
View Article and Find Full Text PDFThe development of an injectable drug-device combination (DDC) product for biologics is an intricate and evolving process that requires substantial investments of time and money. Consequently, the commercial dosage form(s) or presentation(s) are often not ready when pivotal trials commence, and it is common to have drug product changes (manufacturing process or presentation) during clinical development. A scientifically sound and robust bridging strategy is required in order to introduce these changes into the clinic safely.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
September 2014
Objective: The ability of apolipoprotein A-I (apoA-I) to transport cholesterol from atherosclerotic plaque is thought to underlie its inverse correlation with cardiovascular risk. To gauge the potential of infused apoA-I to transport cholesterol, we quantified cholesterol transport markers in human subjects infused with a novel formulation of apoA-I (CSL112).
Approach And Results: CSL112 was infused into human subjects in single (57 subjects) and multiple (36 subjects) ascending dose trials.
CSL112 is apoA-I purified from human plasma and reconstituted with phosphatidylcholine (PC) to form high-density lipoprotein (HDL)-particles suitable for infusion. CSL112 is in development for the potential treatment of acute coronary syndromes (ACS) by optimizing cholesterol efflux. This study assesses the pharmacokinetics (PK), safety and tolerability of CSL112.
View Article and Find Full Text PDFAkt is encoded by a gene family for which each isoform serves distinct but overlapping functions. Based on the phenotypes of the germ line gene disruptions, Akt1 has been associated with control of growth, whereas Akt2 has been linked to metabolic regulation. Here we show that Akt1 serves an unexpected role in the regulation of energy metabolism, as mice deficient for Akt1 exhibit protection from diet-induced obesity and its associated insulin resistance.
View Article and Find Full Text PDFUnder conditions of obesity and insulin resistance, the serine/threonine protein kinase Akt/PKB is required for lipid accumulation in liver. Two forkhead transcription factors, FoxA2 and FoxO1, have been suggested to function downstream of and to be negatively regulated by Akt and are proposed as key determinants of hepatic triglyceride content. In this study, we utilize genetic loss of function experiments to show that constitutive activation of neither FoxA2 nor FoxO1 can account for the protection from steatosis afforded by deletion of Akt2 in liver.
View Article and Find Full Text PDFAfter a meal, insulin suppresses lipolysis through the activation of its downstream kinase, Akt, resulting in the inhibition of protein kinase A (PKA), the main positive effector of lipolysis. During insulin resistance, this process is ineffective, leading to a characteristic dyslipidemia and the worsening of impaired insulin action and obesity. Here, we describe a noncanonical Akt-independent, phosphoinositide-3 kinase (PI3K)-dependent pathway that regulates adipocyte lipolysis using restricted subcellular signaling.
View Article and Find Full Text PDFInsulin drives the global anabolic response to nutrient ingestion, regulating both carbohydrate and lipid metabolism. Previous studies have demonstrated that Akt2/protein kinase B is critical to insulin's control of glucose metabolism, but its role in lipid metabolism has remained controversial. Here, we show that Akt2 is required for hepatic lipid accumulation in obese, insulin-resistant states induced by either leptin deficiency or high-fat diet feeding.
View Article and Find Full Text PDFAkt, or protein kinase B, is a multifunctional serine-threonine protein kinase implicated in a diverse range of cellular functions including cell metabolism, survival, migration, and gene expression. However, the in vivo roles and effectors of individual Akt isoforms in signaling are not explicitly clear. Here we show that the genetic loss of Akt1, but not Akt2, in mice results in defective ischemia and VEGF-induced angiogenesis as well as severe peripheral vascular disease.
View Article and Find Full Text PDFStudies of Drosophila and mammals have revealed the importance of insulin signaling through phosphatidylinositol 3-kinase and the serine/threonine kinase Akt/protein kinase B for the regulation of cell, organ, and organismal growth. In mammals, three highly conserved proteins, Akt1, Akt2, and Akt3, comprise the Akt family, of which the first two are required for normal growth and metabolism, respectively. Here we address the function of Akt3.
View Article and Find Full Text PDFIn the United States, most reported cases of babesiosis have been caused by Babesia microti and acquired in the northeast. Although three cases of babesiosis acquired in New Jersey were recently described by others, babesiosis has not been widely known to be endemic in New Jersey. We describe a case of babesiosis acquired in New Jersey in 1999 in an otherwise healthy 53-year-old woman who developed life-threatening disease.
View Article and Find Full Text PDFTrophic factor deprivation (TFD)-induced apoptosis in sympathetic neurons requires macromolecular synthesis-dependent BAX translocation, cytochrome c (cyt c) release, and caspase activation. Here, we report the contributions of other intrinsic and extrinsic pathway signals to these processes. Sympathetic neurons expressed all antiapoptotic BCL-2 proteins examined, yet expressed only certain BH3-only and multidomain proapoptotic BCL-2 family members.
View Article and Find Full Text PDFMutations in the presenilin-1 (PS-1) gene account for a significant fraction of familial Alzheimer's disease. The biological function of PS-1 is not well understood. We report here that the proliferation-associated gene (PAG) product, a protein of the thioredoxin peroxidase family, interacts with PS-1.
View Article and Find Full Text PDF