In both nature and industry, aerosol droplets contain complex mixtures of solutes, which in many cases include multiple inorganic components. Understanding the drying kinetics of these droplets and the impact on resultant particle morphology is essential for a variety of applications including improving inhalable drugs, mitigating disease transmission, and developing more accurate climate models. However, the previous literature has only focused on the relationship between drying kinetics and particle morphology for aerosol droplets containing a single nonvolatile component.
View Article and Find Full Text PDFHypothesis: Supra-particle formation by evaporation of an aqueous aerosol droplet containing nano-colloidal particles is challenging to investigate but has significant applications. We hypothesise that the Peclet number, Pe, which compares the effectiveness of evaporation-induced advection to that of colloidal diffusion, is critical in determining supra-particle morphology and can be used to predict the dried morphology for droplet containing polydisperse nanoparticles.
Experiments: Sterically-stabilized diblock copolymer nanoparticles were prepared via polymerization-induced self-assembly (PISA).
Aerosol droplets are unique microcompartments with relevance to areas as diverse as materials and chemical synthesis, atmospheric chemistry, and cloud formation. Observations of highly accelerated and unusual chemistry taking place in such droplets have challenged our understanding of chemical kinetics in these microscopic systems. Due to their large surface-area-to-volume ratios, interfacial processes can play a dominant role in governing chemical reactivity and other processes in droplets.
View Article and Find Full Text PDFA deeper understanding of the key processes that determine the particle morphologies generated during aerosol droplet drying is highly desirable for spray-drying of powdered pharmaceuticals and foods, predicting the properties of atmospheric particles, and monitoring disease transmission. Particle morphologies are affected by the drying kinetics of the evaporating droplets, which are in turn influenced by the composition of the initial droplet as well as the drying conditions. Herein, we use polymerization-induced self-assembly (PISA) to prepare three types of sterically stabilized diblock copolymer nanoparticles comprising the same steric stabilizer block and differing core blocks with -average diameters ranging from 32 to 238 nm.
View Article and Find Full Text PDFThe dynamics of binary collisions of equi-diameter picolitre droplets with identical viscosities, varying impact speeds and impact angles have been investigated experimentally and compared to collision outcome prediction models. Collisions between pairs of pure water droplets with a viscosity of 0.89 mPa s and pairs of aqueous-sucrose (40% w/w) droplets with a viscosity of 5.
View Article and Find Full Text PDFThe process of water evaporation, although deeply studied, does not enjoy a kinetic description that captures known physics and can be integrated with other detailed processes such as drying of catalytic membranes embedded in vapor-fed devices and chemical reactions in aerosol whose volumes are changing dynamically. In this work, we present a simple, three-step kinetic model for water evaporation that is based on theory and validated by using well-established thermodynamic models of droplet size as a function of time, temperature, and relative humidity as well as data from time-resolved measurements of evaporating droplet size. The kinetic mechanism for evaporation is a combination of two limiting processes occurring in the highly dynamic liquid-vapor interfacial region: direct first order desorption of a single water molecule and desorption resulting from a local fluctuation, described using third order kinetics.
View Article and Find Full Text PDFA quantitative understanding of the evaporative drying kinetics and nucleation rates of aqueous based aerosol droplets is important for a wide range of applications, from atmospheric aerosols to industrial processes such as spray drying. Here, we introduce a numerical model for interpreting measurements of the evaporation rate and phase change of drying free droplets made using a single particle approach. We explore the evaporation of aqueous sodium chloride and sodium nitrate solution droplets.
View Article and Find Full Text PDFThe Publisher regrets having introduced the following errors into the article when performing proof corrections.
View Article and Find Full Text PDFPurpose: Evaporation and particle formation from multi-solvent microdroplets containing solid excipients pertaining to spray-drying of therapeutic agents intended for lung delivery were studied. Various water and ethanol co-solvent systems containing a variety of actives and excipients (beclomethasone, budesonide, leucine, and trehalose) were considered.
Methods: Numerical methods were used to predict the droplet evaporation rates and internal solute transfers, and their results verified and compared with results from two separate experimental setups.
Aerosols are key components of the atmosphere and play important roles in many industrial processes. Because aerosol particles have high surface-to-volume ratios, their surface properties are especially important. However, direct measurement of the surface properties of aerosol particles is challenging.
View Article and Find Full Text PDFThe validation of approaches to predict the hygroscopicity of complex mixtures of organic components in aerosol is important for understanding the hygroscopic response of organic aerosol in the atmosphere. We report new measurements of the hygroscopicity of mixtures of dicarboxylic acids and amino acids using a comparative kinetic electrodynamic balance (CK-EDB) approach, inferring the equilibrium water content of the aerosol from close to a saturation relative humidity (100%) down to 80%. We show that the solution densities and refractive indices of the mixtures can be estimated with an accuracy of better than ±2% using the molar refractive index mixing rule and densities and refractive indices for the individual binary organic-aqueous solutions.
View Article and Find Full Text PDFNumerous analytical models have been applied to describe the evaporation/condensation kinetics of volatile components from aerosol particles for use in many applications. However, the applicability of these models for treating cases that lead to substantial and rapid changes in particle temperature due to, for example, evaporative cooling remain to be compared with measurements. We consider three typical treatments, comparing predictions of the evaporation rates of pure water droplets over a wide range in gas phase relative humidity (RH) and exploring the sensitivity of the predictions to uncertainties in the thermophysical gas and condensed-phase parameters.
View Article and Find Full Text PDFWe present a first exploratory study to assess the use of aerosol optical tweezers as an instrument for sampling and detecting accumulation- and coarse-mode aerosol. A subpicoliter aqueous aerosol droplet is captured in the optical trap and used as a sampling volume, accreting mass from a free-flowing aerosol generated by a medical nebulizer or atomizer. Real-time measurements of the initial stability in size, refractive index, and composition of the sampling droplet inferred from Raman spectroscopy confirm that these quantities can be measured with high accuracy and low noise.
View Article and Find Full Text PDFRepresenting the physicochemical properties of aerosol particles of complex composition is of crucial importance for understanding and predicting aerosol thermodynamic, kinetic, and optical properties and processes and for interpreting and comparing analysis methods. Here, we consider the representations of the density and refractive index of aqueous-organic aerosol with a particular focus on the dependence of these properties on relative humidity and water content, including an examination of the properties of solution aerosol droplets existing at supersaturated solute concentrations. Using bulk phase measurements of density and refractive index for typical organic aerosol components, we provide robust approaches for the estimation of these properties for aerosol at any intermediate composition between pure water and pure solute.
View Article and Find Full Text PDFWe explore the dependence of the evaporation coefficient of water from aqueous droplets on the composition of a surface film, considering in particular the influence of monolayer mixed component films on the evaporative mass flux. Measurements with binary component films formed from long chain alcohols, specifically tridecanol (C13H27OH) and pentadecanol (C15H31OH), and tetradecanol (C14H29OH) and hexadecanol (C16H33OH), show that the evaporation coefficient is dependent on the mole fractions of the two components forming the monolayer film. Immediately at the point of film formation and commensurate reduction in droplet evaporation rate, the evaporation coefficient is equal to a mole fraction weighted average of the evaporation coefficients through the equivalent single component films.
View Article and Find Full Text PDFUsing a comparative evaporation kinetics approach, we describe a new and accurate method for determining the equilibrium hygroscopic growth of aerosol droplets. The time-evolving size of an aqueous droplet, as it evaporates to a steady size and composition that is in equilibrium with the gas phase relative humidity, is used to determine the time-dependent mass flux of water, yielding information on the vapor pressure of water above the droplet surface at every instant in time. Accurate characterization of the gas phase relative humidity is provided from a control measurement of the evaporation profile of a droplet of know equilibrium properties, either a pure water droplet or a sodium chloride droplet.
View Article and Find Full Text PDFThe slow transport of water, organic species and oxidants in viscous aerosol can lead to aerosol existing in transient states that are not solely governed by thermodynamic principles but by the kinetics of gas-particle partitioning. The relationship between molecular diffusion constants and particle viscosity (for example, as reflected in the Stokes-Einstein equation) is frequently considered to provide an approximate guide to relate the kinetics of aerosol transformation with a material property of the aerosol. We report direct studies of both molecular diffusion and viscosity in the aerosol phase for the ternary system water/maleic acid/sucrose, considering the relationship between the hygroscopic response associated with the change in water partitioning, the volatilisation of maleic acid, the ozonolysis kinetics of maleic acid and the particle viscosity.
View Article and Find Full Text PDFUsing blends of bioethanol and gasoline as automotive fuel leads to a net decrease in the production of harmful emission compared to the use of pure fossil fuel. However, fuel droplet evaporation dynamics change depending on the mixing ratio. Here we use single particle manipulation techniques to study the evaporation dynamics of ethanol/gasoline blend microdroplets.
View Article and Find Full Text PDFWe present a comprehensive evaluation of the variabilities and uncertainties present in determining the kinetics of water transport in ultraviscous aerosol droplets, alongside new measurements of the water transport timescale in sucrose aerosol. Measurements are performed on individual droplets captured using aerosol optical tweezers and the change in particle size during water evaporation or condensation is inferred from shifts in the wavelength of the whispering gallery mode peaks at which spontaneous Raman scattering is enhanced. The characteristic relaxation timescale (τ) for condensation or evaporation of water from viscous droplets following a change in gas phase relative humidity can be described by the Kohlrausch-Williams-Watts function.
View Article and Find Full Text PDFThe microphysical structure and heterogeneous oxidation by ozone of single aerosol particles containing maleic acid (MA) has been studied using aerosol optical tweezers and cavity enhanced Raman spectroscopy. The evaporation rate of MA from aqueous droplets has been measured over a range of relative humidities and the pure component vapor pressure determined to be (1.7 ± 0.
View Article and Find Full Text PDFThe size of aerosol particles prior to, and during, inhalation influences the site of deposition within the lung. As such, a detailed understanding of the hygroscopic growth of an aerosol during inhalation is necessary to accurately model the deposited dose. In the first part of this study, it is demonstrated that the aerosol produced by a nebulizer, depending on the airflows rates, may experience a (predictable) wide range of relative humidity prior to inhalation and undergo dramatic changes in both size and solute concentration.
View Article and Find Full Text PDFEvaporation studies of single aqueous sucrose aerosol particles as a function of relative humidity (RH) are presented for coarse and fine mode particles down into the submicron size range (600 nm < r < 3.0 μm). These sucrose particles serve as a proxy for biogenic secondary organic aerosols that have been shown to exist, under ambient conditions, in an ultraviscous glassy state, which can affect the kinetics of water mass transport within the bulk phase and hinder particle response to changes in the gas phase water content.
View Article and Find Full Text PDFWe report measurements of the subsaturated hygroscopic growth of aerosol particles composed of single organic components of varying oxygen-to-carbon ratio up to relative humidities approaching saturation using the techniques of aerosol optical tweezers and an electrodynamic balance. The variation in the hygroscopicity parameter κ between compounds of even the same O/C ratio is found to be significant with, for example, a range in κ values from 0.12 to 0.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2013
Uncertainties in quantifying the kinetics of evaporation and condensation of water from atmospheric aerosol are a significant contributor to the uncertainty in predicting cloud droplet number and the indirect effect of aerosols on climate. The influence of aerosol particle surface composition, particularly the impact of surface active organic films, on the condensation and evaporation coefficients remains ambiguous. Here, we report measurements of the influence of organic films on the evaporation and condensation of water from aerosol particles.
View Article and Find Full Text PDFThe condensational growth of submicrometer aerosol particles to climate relevant sizes is sensitive to their ability to accommodate vapor molecules, which is described by the mass accommodation coefficient. However, the underlying processes are not yet fully understood. We have simulated the mass accommodation and evaporation processes of water using molecular dynamics, and the results are compared to the condensation equations derived from the kinetic gas theory to shed light on the compatibility of the two.
View Article and Find Full Text PDF