Cryopreservation of articular cartilage will increase tissue availability for osteochondral allografting and improve clinical outcomes. However, successful cryopreservation of articular cartilage requires the precise determination of cryoprotectant permeation kinetics to develop effective vitrification protocols. To date, permeation kinetics of the cryoprotectant formamide in articular cartilage have not been sufficiently explored.
View Article and Find Full Text PDFMany antidepressants, atomoxetine, and several antipsychotics are metabolized by the cytochrome P450 enzymes CYP2D6 and CYP2C19, and guidelines for prescribers based on genetic variants exist. Although some laboratories offer such testing, there is no consensus regarding validated methodology for clinical genotyping of CYP2D6 and CYP2C19. The aim of this paper was to cross-validate multiple technologies for genotyping CYP2D6 and CYP2C19 against each other, and to contribute to feasibility for clinical implementation by providing an enhanced range of assay options, customizable automated translation of data into haplotypes, and a workflow algorithm.
View Article and Find Full Text PDFCryoprotective agents (CPAs) are used in cryopreservation protocols to achieve vitrification. However, the high CPA concentrations required to vitrify a tissue such as articular cartilage are a major drawback due to their cellular toxicity. Oxidation is one factor related to CPA toxicity to cells and tissues.
View Article and Find Full Text PDF