Publications by authors named "Rachael Cunningham"

Cell-free DNA (cfDNA) has emerged as a pivotal player in precision medicine, revolutionizing the diagnostic and therapeutic landscape. While its clinical applications have significantly increased in recent years, current cfDNA assays have limited ability to identify the active transcriptional programs that govern complex disease phenotypes and capture the heterogeneity of the disease. To address these limitations, we have developed a non-invasive platform to enrich and examine the active chromatin fragments (cfDNA) in peripheral blood.

View Article and Find Full Text PDF

Background: Veterinarians hold distinct breed-specific pain sensitivity beliefs that differ from the general public but are highly consistent with one another. This is remarkable as there is no current scientific evidence for biological differences in pain sensitivity across dog breeds. Therefore, the present study evaluated whether pain sensitivity thresholds differ across a set of dog breeds and, if so, whether veterinarians' pain sensitivity ratings explain these differences or whether these ratings are attributed to behavioral characteristics.

View Article and Find Full Text PDF

Quantitative sensory testing (QST) is used to evaluate the function of the somatosensory system in dogs by assessing the response to applied mechanical and thermal stimuli. QST is used to determine normal dogs' sensory thresholds and evaluate alterations in peripheral and central sensory pathways caused by various disease states, including osteoarthritis, spinal cord injury, and cranial cruciate ligament rupture. Mechanical sensory thresholds are measured by electronic von Frey anesthesiometers and pressure algometers.

View Article and Find Full Text PDF

Objectives: The purpose of this study was to evaluate the pain-alleviating and activity-enhancing effects of glucosamine/chondroitin sulfate (Dasuquin) in cats that had degenerative joint disease (DJD) and owner-noted mobility/activity impairment. We hypothesized that the nutritional supplement would produce pain-relieving and activity-enhancing effects in cats with painful DJD.

Methods: In this prospective, randomized, stratified, double-blind, placebo-controlled clinical trial, 59 cats with DJD pain were assigned to receive a placebo (n = 30) or supplement (n = 29) for 6 weeks after 2 weeks of placebo.

View Article and Find Full Text PDF

Platinum(II) compounds are a critical class of chemotherapeutic agents. Recent studies have highlighted the ability of a subset of Pt(II) compounds, including oxaliplatin but not cisplatin, to induce cytotoxicity via nucleolar stress rather than a canonical DNA damage response. In this study, influential properties of Pt(II) compounds were investigated using redistribution of nucleophosmin (NPM1) as a marker of nucleolar stress.

View Article and Find Full Text PDF

Identifying the interactions of small molecules with biomolecules in complex cellular environments is a significant challenge. As one important example, despite being widely used for decades, much is still not understood regarding the cellular targets of Pt(II)-based anticancer drugs. In this study we introduce a novel method for isolation of Pt(II)-bound biomolecules using a DNA hybridization pull-down approach.

View Article and Find Full Text PDF

Pt(II)-based anticancer drugs are widely used in the treatment of a variety of cancers, but their clinical efficacy is hindered by undesirable side effects and resistance. While much research has focused on Pt(II) drug interactions with DNA, there is increasing interest in proteins as alternative targets and contributors to cytotoxic and resistance mechanisms. Here, we describe a chemical proteomic method for isolation and identification of cellular protein targets of platinum compounds using Pt(II) reagents that have been modified for participation in the 1,3 dipolar cycloaddition "click" reaction.

View Article and Find Full Text PDF

cis-[Pt(2-azido-1,3-propanediamine)Cl2] is a reagent for high-yield post-treatment fluorescent labelling of Pt(II) biomolecular targets using click chemistry and exhibits a bias in conformational isomers in the context of duplex DNA. Pt-protein adducts are detected using BSA as a model. Following in vivo treatment, long-lived Pt-RNA adducts are detected on ribosomal RNA.

View Article and Find Full Text PDF