Publications by authors named "Racha El Zein"

Adsorption of organic macromolecules onto surfaces in contact with waters forms a so-called conditioning film and induces modifications of the surface properties. Here, we characterized conditioning films formed onto two hydrophobic materials (used as pipe liner) and immersed for 24 h in tap water. Using combination of atomic force microscopy (AFM), and chemical force microscopy (CFM), we detected some changes in roughness and hydrophilic/hydrophobic balance of the surface of the tested coupons, and also the deposition of numerous organic polymers (few millions/cm) randomly distributed on the surface.

View Article and Find Full Text PDF

The short-term kinetics of bacterial repopulation were evaluated after chlorination of high-density polyethylene (HDPE) colonized with drinking water biofilms and compared with bare HDPE surfaces. The effect of chlorination was partial as a residual biofilm persisted and was time-limited as repopulation occurred immediately after water resupply. The total number of bacteria reached the same levels on both the bare and chlorinated biofilm-fouled HDPE after a seven-day exposure to drinking water.

View Article and Find Full Text PDF

Field effect transistors have risen as one of the most promising techniques in the development of biomedical diagnosis and monitoring. In such devices, the sensitivity and specificity of the sensor rely on the properties of the active sensing layer (gate dielectric and probe layer). We propose here a new type of transistor developed for the detection of Fe(3+) ions in which this sensing layer is made of a monolayer of lipids, engineered in such a way that it is not sensitive to pH in the acidic range, therefore making the device perfectly suitable for biomedical diagnosis.

View Article and Find Full Text PDF

An innovative MOS-type field effect transistor was developed for the electrical detection of ferric ions. The sensing assays clearly show a specific detection with a gate-source voltage shift of up to 200 mV and a wide linear detection range (5 × 10 to 5 × 10 M) associated with good stability, selectivity and reproducibility.

View Article and Find Full Text PDF

We study the effect of polymerization on the nanomechanical stability of supported lipid monolayers consisting of 1,2-di-(10Z,12Z-tricosadiynoyl)-sn-glycero-3-phosphocholine by means of force mapping using an atomic force microscope. For both nonpolymerized and polymerized lipid monolayers, we investigate the break-through forces required to rupture the monolayers for a whole range of loading velocities. We show that the average break-through force exerted by the tip and required to penetrate the monolayer has a logarithmic dependence on the loading rate.

View Article and Find Full Text PDF

The electrical performance of stabilized lipid monolayers on H-terminated silicon is reported for the first time. We show that these 2.7 nm thick only ultrathin layers present extremely low current leakage at high electric field and high breakdown voltage that both compare favorably with the best data reported on organic thin film dielectrics.

View Article and Find Full Text PDF