Glutamate is believed to be the major excitatory transmitter in the mammalian central nervous system. Keeping the extracellular concentration of glutamate low, the glutamate transporters are required for normal brain function. Arachidonic acid (AA) inhibits glutamate uptake in relatively intact preparations (cells, tissue slices, and synaptosomes (Rhoads, D.
View Article and Find Full Text PDFWhile studying the enzymatic processing of arachidonic acid (AA) to eicosanoids in homogenates of hippocampal astrocytes, we observed that all the HPLC peaks corresponding to AA metabolites displayed significantly different levels depending on the presence or not of free Ca2+ in the incubation medium. A specific pattern was noticed, i.e.
View Article and Find Full Text PDFWe have studied the phosphorylation system associated with the rat cerebrocortical microtubule fraction after short- and long-term administration (15 mg/kg) of fluvoxamine, a selective serotonin reuptake inhibitor with antidepressant activity. Fluvoxamine administered for 5 days significantly enhanced the 32P incorporation stimulated by cAMP into MAP2, while it failed to produce this effect after 12 and 21 days. Moreover, in the same periods of treatment no changes were observed in basal phosphorylation and in the pattern of microtubule proteins.
View Article and Find Full Text PDFReuptake of glutamate in astrocytes, a critical mechanism involved in the maintenance of physiological excitatory amino acid neurotransmission, is inhibited by both arachidonic acid (AA) and reactive oxygen species (ROS), via incompletely defined molecular mechanisms. Because ROS are generated during AA metabolism and AA can be released as a result of ROS-mediated phospholipase A2 activation, it seems likely that their effects on uptake are mediated by a common mechanism. However, here we show that rapid (10-min) uptake inhibitions by AA or by ROS generated by the xanthine plus xanthine oxidase (XO) reaction are selectively abolished by distinct agents; bovine serum albumin (BSA) acts only on AA, whereas the scavenger enzymes superoxide dismutase (SOD) and catalase (CAT) and the disulfide-reducing agent dithiothreitol (DTT) act only on ROS.
View Article and Find Full Text PDFThe effect of glucose on kinetics and the voltage-dependent characteristics of glucose-sensitive channels in hippocampal neurons were examined with the cell-attached mode of the patch-clamp technique. Recordings of a 100-pS K+ channel in the presence or absence of glucose demonstrate that the increase in channel open state probability (Po) induced by glucose deprivation (40- to 400-times the control in high-glucose medium) was largely due to a decrease in the global amount of time spent by the channel in a long-lived closed state. The Po value of the same 100-pS channel was also found to increase (by approx.
View Article and Find Full Text PDFBrain Res Mol Brain Res
September 1994
Different NMDA receptor subunits have been recently cloned. The present paper describes the developmental profile of expression of the NR-1 subunit and three NR-2 subunits (A, B, C) in the rat central nervous system. A sensitive RNase protection assay was employed to determine simultaneously the mRNA levels of these receptor subunits.
View Article and Find Full Text PDFFormation of reactive oxygen species and disfunction of the excitatory amino acid (EAA) system are thought to be key events in the development of neuronal injury in several acute and long-term neurodegenerative diseases. Recent evidence suggests that the two phenomena may be interdependent. The present study is aimed at exploring possible molecular mechanisms underlying oxygen radical-EAA interaction.
View Article and Find Full Text PDFBoth RNase protection assay and in situ hybridization were used to investigate the effect of intraperitoneal injection of kainate on the messenger RNA levels for basic fibroblast growth factor in the rat central nervous system. Limbic motor seizures were produced by kainate injection and this event was followed by a significant elevation of basic fibroblast growth factor gene expression in rat hippocampus and striatum 6 h after the convulsant injection. The increase in hippocampus was maximal at 24 h and it was delayed with respect to nerve growth factor induction, which peaked 3 h after kainate injection.
View Article and Find Full Text PDFEur Neuropsychopharmacol
December 1993
In vitro exposure of rat cerebrocortical slices to microM concentrations of serotonin (5HT) results in an increased response of adenylate cyclase to isoproterenol (ISO). No change in the affinity of the beta-adrenoceptor toward the agonist was found after 5HT exposure when measuring ISO displacement of [3H]CGP 12177 binding. A similar increase of adenylate cyclase response was also found when using VIP as a stimulatory agent.
View Article and Find Full Text PDFBiochem Biophys Res Commun
June 1993
The link between excitatory amino acid (EAA) receptor activation and the nitric oxide/cyclic GMP intracellular pathway was investigated in primary cultures of mouse mesencephalic neurons. L-glutamate, N-methyl-D-aspartate (NMDA), kainate (KA) and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate were able to induce cyclic GMP formation. NMDA and KA were the most effective and their action could be blocked, besides the specific antagonists 2-amino-5-phosphonopentanoate and 6-cyano-7-nitroquinoxaline-2,3-dione, by NG-nitro-L-arginine, a nitric oxide synthase inhibitor.
View Article and Find Full Text PDFCyclic AMP is a second messenger by which different extracellular signals are transduced into biological responses. Within the cell, most of the effects of cAMP are mediated through the cAMP protein kinase which appears to be localized in specific compartments of the cell near to their substrate proteins. In the present study, we have investigated the possible association of cAMP-dependent protein kinase, its substrate proteins and RII binding proteins in stable microtubules from rat cerebral cortex.
View Article and Find Full Text PDFThromboembolic phenomena and transient ischaemic attacks (TIA) are considered the basis of ischaemic pathologies. The aim of the present research is to investigate the involvement of k-opioid receptors in cerebral blood flow (CBF) impairment which results in experimental stroke or dietary atherosclerosis in rabbits. CBF measurement showed a significant decrease in rabbits submitted to embolization and/or atherosclerosis.
View Article and Find Full Text PDFChannels linking the electrical and metabolic activities of cells (KATP channels) have been described in various tissues, including some brain areas (hypothalamus, cerebral cortex and substantia nigra). Here we report the existence in hippocampal neurons of K+ permeant channels whose activity is regulated by extracellular glucose. They are open at the cell resting potential and respond to transient hypoglycemia with a reversible increase in activity.
View Article and Find Full Text PDFWe have studied the effect of carbamoylcholine in Trypanosoma cruzi epimastigote forms prelabelled with [32P]-Pi. Suspensions of cells were incubated at 28 degrees C to measure changes in the levels of [32P]-labelled phospholipids after stimulation. The presence of this cholinergic agonist induced changes in the phosphoinositide metabolism; a shift in the levels of phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol 4-phosphate (PIP) and phosphatidic acid (PA) was observed, whereas the levels of the other glycerophospholipids were not changed.
View Article and Find Full Text PDFBy using both synaptosomes and cultured astrocytes from rat cerebral cortex, we have investigated the inhibitory action of arachidonic acid on the high-affinity glutamate uptake systems, focusing on the possible physiological significance of this mechanism. Application of arachidonic acid (1-100 microM) to either preparation leads to fast (within 30 s) and largely reversible reduction in the uptake rate. When either melittin (0.
View Article and Find Full Text PDFThe polyphosphoinositides from Trypanosoma cruzi were isolated by preparative thin-layer chromatography (TLC) and identified. When myo-[3H]inositol was present in the culture medium for five days, analyses showed the presence of phosphatidylinositol (PI), lysophosphatidylinositol (lysoPI), phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2). Short-term incubation with 32Pi led to higher percentages of incorporation into phosphatidylethanolamine (PE), lysophosphatidylethanolamine (lysoPE) and PI compared to the other glycerophospholipids.
View Article and Find Full Text PDFAn application of the particle beam-liquid chromatography-mass spectrometry technique to the quantification of hydroxyeicosatetraenoic acids (15-, 12-, and 5-HETE) in biological samples is presented. The acids are extracted with Ethyl acetate and then transformed into pentafluorobenzyl esters, thus increasing the sensitivity of their detection by negative chemical ionization mass spectrometry. Reverse-phase HPLC separation of HETEs is performed in about 10 min with a water-methanol gradient.
View Article and Find Full Text PDFAge-related reduction in the steady-state levels of messenger RNA for D2(415) and D2(444), the alternatively spliced form of dopamine D2 receptors, was observed in different rat brain areas using the sensitive reverse transcription (RT)-polymerase chain reaction (PCR) technique. In both Sprague-Dawley and Wistar aged rats, the decrease was more pronounced in the D2(444) isoform mRNA thus leading to a changed ratio in striatum as well as in the hippocampus.
View Article and Find Full Text PDFRecent evidence indicates that arachidonic acid (AA) and its metabolites play a fast messenger role in synaptic modulation in the CNS. 12-Lipoxygenase derivatives are released by Aplysia sensory neurons in response to inhibitory transmitters and directly target a class of K+ channels, increasing the probability of their opening. In this way, hyperpolarization is achieved and action potentials are shortened, leading to synaptic depression.
View Article and Find Full Text PDFRecently it has been suggested that endogenous k-opioid receptors may have a physiopathological role in ischemia induced neurodegeneration. The aim of this research is to show that in experimental thromboembolic (obtained mechanically using microspheres injected in the carotid) and atherosclerotic pathologies (obtained through a special diet) there is a common mechanism which involves mediation by dynorphine and the receptor compartment considered. The results, obtained using receptor binding techniques, showed a statistically significant increase in the number of k-opioid receptors (Bmax) without variations in the affinity (Kd) for the 3H dynorphine.
View Article and Find Full Text PDFThis study was undertaken to evaluate the cyclic adenosine monophosphate (cAMP) binding proteins in the cerebral cortex of rat after short- and long-term administration with antidepressants. Prolonged treatment with different antidepressants that inhibit serotonin or norepinephrine uptake such as fluoxetine and the (+) enantiomer of oxaprotiline, respectively, was able to induce an increase in the photoactivated incorporation of 8-N3-[32P]cAMP into a protein band with apparent molecular weight of 52,000 in both soluble and crude microtubule fraction. On the contrary, chronic treatment with the (-) enantiomer of oxaprotiline, which does not affect monoamine uptake, failed to produce this effect.
View Article and Find Full Text PDF