We propose and analyze a scalable and fully autonomous scheme for preparing spatially distributed multiqubit entangled states in a dual-rail waveguide QED setup. In this approach, arrays of qubits located along two separated waveguides are illuminated by correlated photons from the output of a nondegenerate parametric amplifier. These photons drive the qubits into different classes of pure entangled steady states, for which the degree of multipartite entanglement can be conveniently adjusted by the chosen pattern of local qubit-photon detunings.
View Article and Find Full Text PDFWe address the fundamental question of whether or not it is possible to achieve conditions under which the coupling of a single dipole to a strongly confined electromagnetic vacuum can result in nonperturbative corrections to the dipole's ground state. To do so we consider two simplified, but otherwise rather generic cavity QED setups, which allow us to derive analytic expressions for the total ground-state energy and to distinguish explicitly between purely electrostatic and genuine vacuum-induced contributions. Importantly, this derivation takes the full electromagnetic spectrum into account while avoiding any ambiguities arising from an ad hoc mode truncation.
View Article and Find Full Text PDFQuantum entanglement is a key resource in currently developed quantum technologies. Sharing this fragile property between superconducting microwave circuits and optical or atomic systems would enable new functionalities, but this has been hindered by an energy scale mismatch of >10 and the resulting mutually imposed loss and noise. In this work, we created and verified entanglement between microwave and optical fields in a millikelvin environment.
View Article and Find Full Text PDFWe study the implementation of arbitrary excitation-conserving linear transformations between two sets of N stationary bosonic modes, which are connected through a photonic quantum channel. By controlling the individual couplings between the modes and the channel, an initial N-partite quantum state in register A can be released as a multiphoton wave packet and, successively, be reabsorbed in register B. Here we prove that there exists a set of control pulses that implement this transfer with arbitrarily high fidelity and, simultaneously, realize a prespecified N×N unitary transformation between the two sets of modes.
View Article and Find Full Text PDFWe study light-matter interactions in two-dimensional photonic systems in the presence of a spatially homogeneous synthetic magnetic field for light. Specifically, we consider one or more two-level emitters located in the bulk region of the lattice, where for increasing magnetic field the photonic modes change from extended plane waves to circulating Landau levels. This change has a drastic effect on the resulting emitter-field dynamics, which becomes intrinsically non-Markovian and chiral, leading to the formation of strongly coupled Landau-photon polaritons.
View Article and Find Full Text PDFWe study the collective decay of two-level emitters coupled to a nonlinear waveguide, for example, a nanophotonic lattice or a superconducting resonator array with strong photon-photon interactions. Under these conditions, a new decay channel into bound photon pairs emerges, through which spatial correlations between emitters are established by regular interference as well as interactions between the photons. We derive an effective Markovian theory to model the resulting decay dynamics of an arbitrary distribution of emitters and identify collective effects beyond the usual phenomena of super- and subradiance.
View Article and Find Full Text PDFWe propose and analyze a novel realization of a solid-state quantum network, where separated silicon-vacancy centers are coupled via the phonon modes of a quasi-one-dimensional diamond waveguide. In our approach, quantum states encoded in long-lived electronic spin states can be converted into propagating phonon wave packets and be reabsorbed efficiently by a distant defect center. Our analysis shows that under realistic conditions, this approach enables the implementation of high-fidelity, scalable quantum communication protocols within chip-scale spin-qubit networks.
View Article and Find Full Text PDFWe analyze a multiqubit circuit QED system in the regime where the qubit-photon coupling dominates over the system's bare energy scales. Under such conditions a manifold of low-energy states with a high degree of entanglement emerges. Here we describe a time-dependent protocol for extracting these quantum correlations and converting them into well-defined multipartite entangled states of noninteracting qubits.
View Article and Find Full Text PDFPhysical systems with loss or gain have resonant modes that decay or grow exponentially with time. Whenever two such modes coalesce both in their resonant frequency and their rate of decay or growth, an 'exceptional point' occurs, giving rise to fascinating phenomena that defy our physical intuition. Particularly intriguing behaviour is predicted to appear when an exceptional point is encircled sufficiently slowly, such as a state-flip or the accumulation of a geometric phase.
View Article and Find Full Text PDFWe show that nitrogen-vacancy (NV) centers in diamond interfaced with a suspended carbon nanotube carrying a dc current can facilitate a spin-nanomechanical hybrid device. We demonstrate that strong magnetomechanical interactions between a single NV spin and the vibrational mode of the suspended nanotube can be engineered and dynamically tuned by external control over the system parameters. This spin-nanomechanical setup with strong, intrinsic, and tunable magnetomechanical couplings allows for the construction of hybrid quantum devices with NV centers and carbon-based nanostructures, as well as phonon-mediated quantum information processing with spin qubits.
View Article and Find Full Text PDFWe present a general framework for contextuality tests in phase space using displacement operators. First, we derive a general condition that a single-mode displacement operator should fulfill in order to construct Peres-Mermin square and similar scenarios. This approach offers a straightforward scheme for experimental implementations of the tests via modular variable measurements.
View Article and Find Full Text PDFAn extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states.
View Article and Find Full Text PDFA quantum simulator of [Formula: see text] lattice gauge theories can be implemented with superconducting circuits. This allows the investigation of confined and deconfined phases in quantum link models, and of valence bond solid and spin liquid phases in quantum dimer models. Fractionalized confining strings and the real-time dynamics of quantum phase transitions are accessible as well.
View Article and Find Full Text PDFGeneralized Dicke models can be implemented in hybrid quantum systems built from ensembles of nitrogen-vacancy (NV) centers in diamond coupled to superconducting microwave cavities. By engineering cavity assisted Raman transitions between two spin states of the NV defect, a fully tunable model for collective light-matter interactions in the ultrastrong coupling limit can be obtained. Our analysis of the resulting nonequilibrium phases for a single cavity and for coupled cavity arrays shows that different superradiant phase transitions can be observed using existing experimental technologies, even in the presence of large inhomogeneous broadening of the spin ensemble.
View Article and Find Full Text PDFWe describe a new and experimentally feasible protocol for performing fundamental tests of quantum mechanics with massive objects. In our approach, a single two-level system is used to probe the motion of a nanomechanical resonator via multiple Ramsey interference measurements. This scheme enables the measurement of modular variables of macroscopic continuous-variable systems; we show that correlations thereof violate a Leggett-Garg inequality and can be applied for tests of quantum contextuality.
View Article and Find Full Text PDFPhys Rev Lett
September 2013
We describe a superconducting-circuit lattice design for the implementation and simulation of dynamical lattice gauge theories. We illustrate our proposal by analyzing a one-dimensional U(1) quantum-link model, where superconducting qubits play the role of matter fields on the lattice sites and the gauge fields are represented by two coupled microwave resonators on each link between neighboring sites. A detailed analysis of a minimal experimental protocol for probing the physics related to string breaking effects shows that, despite the presence of decoherence in these systems, distinctive phenomena from condensed-matter and high-energy physics can be visualized with state-of-the-art technology in small superconducting-circuit arrays.
View Article and Find Full Text PDFWe propose and analyze a novel mechanism for long-range spin-spin interactions in diamond nanostructures. The interactions between electronic spins, associated with nitrogen-vacancy centers in diamond, are mediated by their coupling via strain to the vibrational mode of a diamond mechanical nanoresonator. This coupling results in phonon-mediated effective spin-spin interactions that can be used to generate squeezed states of a spin ensemble.
View Article and Find Full Text PDFWe describe how strong resonant interactions in multimode optomechanical systems can be used to induce controlled nonlinear couplings between single photons and phonons. Combined with linear mapping schemes between photons and phonons, these techniques provide a universal building block for various classical and quantum information processing applications. Our approach is especially suited for nano-optomechanical devices, where strong optomechanical interactions on a single photon level are within experimental reach.
View Article and Find Full Text PDFWe describe a new approach for on-chip optical non-reciprocity which makes use of strong optomechanical interaction in microring resonators. By optically pumping the ring resonator in one direction, the optomechanical coupling is only enhanced in that direction, and consequently, the system exhibits a non-reciprocal response. For different configurations, this system can function either as an optical isolator or a coherent non-reciprocal phase shifter.
View Article and Find Full Text PDFMechanical systems can be influenced by a wide variety of small forces, ranging from gravitational to optical, electrical, and magnetic. When mechanical resonators are scaled down to nanometer-scale dimensions, these forces can be harnessed to enable coupling to individual quantum systems. We demonstrate that the coherent evolution of a single electronic spin associated with a nitrogen vacancy center in diamond can be coupled to the motion of a magnetized mechanical resonator.
View Article and Find Full Text PDFWe analyze the photon statistics of a weakly driven optomechanical system and discuss the effect of photon blockade under single-photon strong coupling conditions. We present an intuitive interpretation of this effect in terms of displaced oscillator states and derive analytic expressions for the cavity excitation spectrum and the two-photon correlation function g(2)(0). Our results predict the appearance of nonclassical photon correlations in the combined strong coupling and sideband resolved regime and provide a first detailed understanding of photon-photon interactions in strong coupling optomechanics.
View Article and Find Full Text PDFWe describe a new scheme to interconvert stationary and photonic qubits which is based on indirect qubit-light interactions mediated by a mechanical resonator. This approach does not rely on the specific optical response of the qubit and thereby enables optical quantum interfaces for a wide range of solid state spin and charge based systems. We discuss the implementation of state transfer protocols between distant nodes of a quantum network and show that high transfer fidelities can be achieved under realistic experimental conditions.
View Article and Find Full Text PDFWe propose and analyze a technique that allows one to suppress inelastic collisions and simultaneously enhance elastic interactions between cold polar molecules. The main idea is to cancel the leading dipole-dipole interaction with a suitable combination of static electric and microwave fields in such a way that the remaining van der Waals-type potential forms a three-dimensional repulsive shield. We analyze the elastic and inelastic scattering cross sections relevant for evaporative cooling of polar molecules and discuss the prospect for the creation of stable crystalline structures.
View Article and Find Full Text PDFWe investigate a hybrid quantum circuit where ensembles of cold polar molecules serve as long-lived quantum memories and optical interfaces for solid state quantum processors. The quantum memory realized by collective spin states (ensemble qubit) is coupled to a high-Q stripline cavity via microwave Raman processes. We show that, for convenient trap-surface distances of a few microm, strong coupling between the cavity and ensemble qubit can be achieved.
View Article and Find Full Text PDFBased on a real-time measurement of the motion of a single ion in a Paul trap, we demonstrate its electromechanical cooling below the Doppler limit by homodyne feedback control (cold damping). The feedback cooling results are well described by a model based on a quantum mechanical master equation.
View Article and Find Full Text PDF