T cell engaging bispecific antibodies have shown clinical proof of concept for hematologic malignancies. Still, cytokine release syndrome, neurotoxicity, and on-target-off-tumor toxicity, especially in the solid tumor setting, represent major obstacles. Second generation TCEs have been described that decouple cytotoxicity from cytokine release by reducing the apparent binding affinity for CD3 and/or the TAA but the results of such engineering have generally led only to reduced maximum induction of cytokine release and often at the expense of maximum cytotoxicity.
View Article and Find Full Text PDFNatural killer (NK) cells emerged as a promising effector population that can be harnessed for anti-tumor therapy. In this work, we constructed NK cell engagers (NKCEs) based on NKp30-targeting single domain antibodies (sdAbs) that redirect the cytotoxic potential of NK cells toward epidermal growth factor receptor (EGFR)-expressing tumor cells. We investigated the impact of crucial parameters such as sdAb location, binding valencies, the targeted epitope on NKp30, and the overall antibody architecture on the redirection capacity.
View Article and Find Full Text PDFThe costimulatory receptor CD137 (also known as TNFRSF9 or 4-1BB) sustains effective cytotoxic T-cell responses. Agonistic anti-CD137 cancer immunotherapies are being investigated in clinical trials. Development of the first-generation CD137-agonist monotherapies utomilumab and urelumab was unsuccessful due to low antitumor efficacy mediated by the epitope recognized on CD137 or hepatotoxicity mediated by Fcγ receptors (FcγR) ligand-dependent CD137 activation, respectively.
View Article and Find Full Text PDFIn this work, we have generated novel Fc-comprising NK cell engagers (NKCEs) that bridge human NKp30 on NK cells to human epidermal growth factor receptor (EGFR) on tumor cells. Camelid-derived VHH single-domain Abs specific for human NKp30 and a humanized Fab derived from the EGFR-specific therapeutic Ab cetuximab were used as binding arms. By combining camelid immunization with yeast surface display, we were able to isolate a diverse panel of NKp30-specific VHHs against different epitopes on NKp30.
View Article and Find Full Text PDFHuman germinal center-associated lymphoma (HGAL) is an adaptor protein specifically expressed in germinal center lymphocytes. High expression of HGAL is a predictor of prolonged survival of diffuse large B-cell lymphoma (DLBCL) and classic Hodgkin lymphoma. Furthermore, HGAL expression is associated with early-stage DLBCL, thus potentially limiting lymphoma dissemination.
View Article and Find Full Text PDFActivating NK cell receptors represent promising target structures to elicit potent antitumor immune responses. In this study, novel immunoligands were generated that bridge the activating NK cell receptor NKp30 on NK cells with epidermal growth factor receptor (EGFR) on tumor cells in a bispecific IgG-like format based on affinity-optimized versions of B7-H6 and the Fab arm derived from cetuximab. To enhance NKp30 binding, the solitary N-terminal IgV domain of B7-H6 (ΔB7-H6) was affinity matured by an evolutionary library approach combined with yeast surface display.
View Article and Find Full Text PDFAdoptive immunotherapy retargeting T cells to CD19 via a chimeric antigen receptor (CAR) is an investigational treatment capable of inducing complete tumor regression of B-cell malignancies when there is sustained survival of infused cells. T-memory stem cells (T) retain superior potential for long-lived persistence, but challenges exist in manufacturing this T-cell subset because they are rare among circulating lymphocytes. We report a clinically relevant approach to generating CAR T cells with preserved T potential using the Sleeping Beauty platform.
View Article and Find Full Text PDFPurpose: We have incorporated a positron emission tomography (PET) functionality in T cells expressing a CD19-specific chimeric antigen receptor (CAR) to non-invasively monitor the adoptively transferred cells.
Procedures: We engineered T cells to express CD19-specific CAR, firefly luciferase (ffLuc), and herpes simplex virus type-1 thymidine kinase (TK) using the non-viral-based Sleeping Beauty (SB) transposon/transposase system adapted for human application. Electroporated primary T cells were propagated on CD19 artificial antigen-presenting cells.
Ligands for the NKG2D receptor are overexpressed on tumors, making them interesting immunotherapy targets. To assess the tumoricidal properties of T cells directed to attack NKG2D ligands, we engineered murine T cells with two distinct NKG2D-based chimeric antigen receptors (CARs): (i) a fusion between the NKG2D receptor and the CD3ζ chain and (ii) a conventional second-generation CAR, where the extracellular domain of NKG2D was fused to CD28 and CD3ζ. To enhance the CAR surface expression, we also engineered T cells to coexpress DAP10.
View Article and Find Full Text PDFPurpose: The human endogenous retrovirus (HERV-K) envelope (env) protein is a tumor-associated antigen (TAA) expressed on melanoma but not normal cells. This study was designed to engineer a chimeric antigen receptor (CAR) on T-cell surface, such that they target tumors in advanced stages of melanoma.
Experimental Design: Expression of HERV-K protein was analyzed in 220 melanoma samples (with various stages of disease) and 139 normal organ donor tissues using immunohistochemical (IHC) analysis.
Clinical-grade T cells are genetically modified ex vivo to express chimeric antigen receptors (CARs) to redirect their specificity to target tumor-associated antigens in vivo. We now have developed this molecular strategy to render cytotoxic T cells specific for fungi. We adapted the pattern-recognition receptor Dectin-1 to activate T cells via chimeric CD28 and CD3-ζ (designated "D-CAR") upon binding with carbohydrate in the cell wall of Aspergillus germlings.
View Article and Find Full Text PDFPurpose: To activate and propagate populations of γδ T cells expressing polyclonal repertoire of γ and δ T-cell receptor (TCR) chains for adoptive immunotherapy of cancer, which has yet to be achieved.
Experimental Design: Clinical-grade artificial antigen-presenting cells (aAPC) derived from K562 tumor cells were used as irradiated feeders to activate and expand human γδ T cells to clinical scale. These cells were tested for proliferation, TCR expression, memory phenotype, cytokine secretion, and tumor killing.
Background: Intratumoral heterogeneity in glioblastoma multiforme (GBM) poses a significant barrier to therapy in certain subpopulation such as the tumor-initiating cell population, being shown to be refractory to conventional therapies. Oncolytic virotherapy has the potential to target multiple compartments within the tumor and thus circumvent some of the barriers facing conventional therapies. In this study, we investigate the oncolytic potential of myxoma virus (MYXV) alone and in combination with rapamycin in vitro and in vivo using human brain tumor-initiating cells (BTICs).
View Article and Find Full Text PDFTo understand why cancer vaccine-induced T cells often do not eradicate tumors, we studied immune responses in mice vaccinated with gp100 melanoma peptide in incomplete Freund's adjuvant (peptide/IFA), which is commonly used in clinical cancer vaccine trials. Peptide/IFA vaccination primed tumor-specific CD8(+) T cells, which accumulated not in tumors but rather at the persisting, antigen-rich vaccination site. Once there, primed T cells became dysfunctional and underwent antigen-driven, interferon-γ (IFN-γ)- and Fas ligand (FasL)-mediated apoptosis, resulting in hyporesponsiveness to subsequent vaccination.
View Article and Find Full Text PDFThe Sleeping Beauty (SB) transposon/transposase DNA plasmid system is used to genetically modify cells for long-term transgene expression. We adapted the SB system for human application and generated T cells expressing a chimeric antigen receptor (CAR) specific for CD19. Electrotransfer of CD19-specific SB DNA plasmids in peripheral blood mononuclear cells and propagation on CD19 artificial antigen presenting cells was used to numerically expand CD3 T cells expressing CAR.
View Article and Find Full Text PDFPurpose: More effective, less toxic treatments for recurrent ovarian cancer are needed. Although more than 60% of ovarian cancers express the estrogen receptor (ER), ER-targeted drugs have been disappointing due to drug resistance. In other estrogen-sensitive cancers, estrogen activates Src to phosphorylate p27 promoting its degradation and increasing cell-cycle progression.
View Article and Find Full Text PDFPurpose: T-cell receptor (TCR) variable Vα and Vβ gene diversity is a surrogate biomarker for the therapeutic potential of adoptive immunotherapy and cellular immunity. Therefore, creating a straightforward, rapid, sensitive, and reliable method to view the global changes of both TCRVα and Vβ transcripts in heterogeneous populations of T cells is appealing.
Experimental Design: We designed a "direct TCR expression assay" (DTEA) using a panel of customized bar-coded probes that simultaneously detects and quantifies 45 Vα and 46 Vβ transcripts in a nonenzymatic digital multiplexed assay from a small number of cells (10(4) cells) or as little as 100 ng of total RNA.
Unlabelled: KRAS mutation is a hallmark of pancreatic ductal adenocarcinoma (PDA) but remains an intractable pharmacologic target. Consequently, defining RAS effector pathway(s) required for PDA initiation and maintenance is critical to improve treatment of this disease. Here, we show that expression of BRAF(V600E), but not PIK3CA(H1047R), in the mouse pancreas leads to pancreatic intraepithelial neoplasia (PanIN) lesions.
View Article and Find Full Text PDFClinical-grade T cells are genetically modified ex vivo to express a chimeric antigen receptor (CAR) to redirect specificity to a tumor associated antigen (TAA) thereby conferring antitumor activity in vivo. T cells expressing a CD19-specific CAR recognize B-cell malignancies in multiple recipients independent of major histocompatibility complex (MHC) because the specificity domains are cloned from the variable chains of a CD19 monoclonal antibody. We now report a major step toward eliminating the need to generate patient-specific T cells by generating universal allogeneic TAA-specific T cells from one donor that might be administered to multiple recipients.
View Article and Find Full Text PDFIntroduction: The cannabinoid receptor type 2 (CB(2)) is an important target for development of drugs and imaging agents for diseases, such as neuroinflammation, neurodegeneration and cancer. Recently, we reported synthesis and results of in vitro receptor binding of a focused library of fluorinated 2-oxoquinoline derivatives as CB(2) receptor ligands. Some of the compounds demonstrated to be good CB(2)-specific ligands with Ki values in the nanomolar to subnanomolar concentrations; therefore, we pursued the development of their (18)F-labeled analogues that should be useful for positron emission tomography (PET) imaging of CB(2) receptor expression.
View Article and Find Full Text PDFBackground: Mesenchymal stem cells (MSCs) can differentiate into endothelial cells in vivo. However, it is unknown if the differentiated MSCs persist in vivo and if this potential persistence contributes to functional improvement after experimental myocardial infarction.
Methods And Results: We generated a lentivector encoding 2 distinct reporter genes, one driven by a constitutive murine stem cell virus promoter and the other driven by an endothelial-specific Tie-2 promoter.
The long-term fate of stem cells after intramyocardial delivery is unknown. We used noninvasive, repetitive PET/CT imaging with [(18)F]FEAU to monitor the long-term (up to 5 months) spatial-temporal dynamics of MSCs retrovirally transduced with the sr39HSV1-tk gene (sr39HSV1-tk-MSC) and implanted intramyocardially in pigs with induced acute myocardial infarction. Repetitive [(18)F]FEAU PET/CT revealed a biphasic pattern of sr39HSV1-tk-MSC dynamics; cell proliferation peaked at 33-35 days after injection, in periinfarct regions and the major cardiac lymphatic vessels and lymph nodes.
View Article and Find Full Text PDFT cell activation is subject to tight regulation to avoid inappropriate responses to self antigens. Here we show that genetic deficiency in the ubiquitin ligase Peli1 caused hyperactivation of T cells and rendered T cells refractory to suppression by regulatory T cells and transforming growth factor-β (TGF-β). As a result, Peli1-deficient mice spontaneously developed autoimmunity characterized by multiorgan inflammation and autoantibody production.
View Article and Find Full Text PDF