Publications by authors named "Rabina J"

Mesenchymal stem/stromal cells (MSCs) have the capacity to counteract excessive inflammatory responses. MSCs possess a range of immunomodulatory mechanisms, which can be deployed in response to signals in a particular environment and in concert with other immune cells. One immunosuppressive mechanism, not so well-known in MSCs, is mediated via adenosinergic pathway by ectonucleotidases CD73 and CD39.

View Article and Find Full Text PDF

Stem cells have a unique ability to self-renew and differentiate into diverse cell types. Currently, stem cells from various sources are being explored as a promising new treatment for a variety of human diseases. A diverse set of functional and phenotypical markers are used in the characterization of specific therapeutic stem cell populations.

View Article and Find Full Text PDF

Human multipotent mesenchymal stromal/stem cells (MSCs) have been shown to exert immunomodulatory properties that have great potential in therapies for various inflammatory and autoimmune disorders. However, intravenous delivery of these cells is followed by massive cell entrapment in the lungs and insufficient homing to target tissues or organs. In targeting to tissues, MSCs and other therapeutic cells employ similar mechanisms as leucocytes, including a cascade of rolling and adhesion steps mediated by selectins, integrins and their ligands.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed a new in vitro culture model to expand switched-memory B lymphocytes, enabling the production of a wide range of human IgG antibodies.
  • They studied the N-glycosylation profiles of these immunoglobulins over 38 days using advanced techniques like liquid chromatography-mass spectrometry, comparing them to commercial intravenous immunoglobulin (IVIG).
  • The results showed strong cell viability and a maintained B cell repertoire, but noted differences in glycosylation patterns, specifically higher levels of bisecting GlcNAc, which could impact the effectiveness of therapeutic antibodies.
View Article and Find Full Text PDF

Multipotent mesenchymal stem/stromal cells (MSCs) offer great promise for future regenerative and anti-inflammatory therapies. Panels of functional and phenotypical markers are currently used in characterization of different therapeutic stem cell populations from various sources. The i antigen (linear poly-N-acetyllactosamine) from the Ii blood group system has been suggested as a marker for MSCs derived from umbilical cord blood (UCB).

View Article and Find Full Text PDF

There is an increasing interest in the modification of cell surface glycosylation to improve the properties of therapeutic cells. For example, glycosylation affects the biodistribution of mesenchymal stromal cells (MSCs). Metabolic glycoengineering is an efficient way to modify the cell surface.

View Article and Find Full Text PDF

Reversed-phase liquid chromatography on the nanoscale coupled to electrospray tandem mass spectrometry was used to analyse a mixture of four commercial glycan standards, and the method was further adapted to N-glycans enzymatically released from alpha-1-acid glycoprotein and immunoglobulin gamma. Glycans were permethylated to enable their separation by reversed-phase chromatography and to facilitate interpretation of fragmentation data. Prior to derivatization of glycans by permethylation, they were reduced to cancel anomerism because, although feasible, it was not desired to separate α- and β-anomers.

View Article and Find Full Text PDF

Despite recent technical advances in glycan analysis, the rapidly growing field of glycomics still lacks methods that are high throughput and robust, and yet allow detailed and reliable identification of different glycans. LC-MS-MS(2) methods have a large potential for glycan analysis as they enable separation and identification of different glycans, including structural isomers. The major drawback is the complexity of the data with different charge states and adduct combinations.

View Article and Find Full Text PDF

Multipotent mesenchymal stem cells (MSCs) offer great promise for future regenerative and anti-inflammatory therapies. However, there is a lack of methods to quickly and efficiently isolate, characterize, and ex vivo expand desired cell populations for therapeutic purposes. Single markers to identify cell populations have not been characterized; instead, all characterizations rely on panels of functional and phenotypical properties.

View Article and Find Full Text PDF

Intestinal microbiota plays an important role in human health, and its composition is determined by several factors, such as diet and host genotype. However, thus far it has remained unknown which host genes are determinants for the microbiota composition. We studied the diversity and abundance of dominant bacteria and bifidobacteria from the faecal samples of 71 healthy individuals.

View Article and Find Full Text PDF

Background: Although ischemia-reperfusion (I/R) injury represents a major problem in posttransplant organ failure, effective treatment is not available. The acute phase protein alpha-1-acid glycoprotein (AGP) has been shown to be protective against experimental I/R injury. The effects of AGP are thought to be mediated by fucose groups expressed on the AGP protein inhibiting neutrophil infiltration.

View Article and Find Full Text PDF

Actinobacillus actinomycetemcomitans is a Gram-negative coccobacillus that can cause various forms of severe periodontitis and other nonoral infections in human patients. The serotype a-specific polysaccharide antigen of A. actinomycetemcomitans contains solely 6-deoxy-D-talose and its O-2 acetylated modification.

View Article and Find Full Text PDF

Analysis of nucleotide sugar metabolism is essential in studying glycosylation in cells. Here we describe practical methods for both extraction of nucleotide sugars from cell lysates and for their analytical separation. Solid-phase extraction cartridges containing graphitized carbon can be used for the purification of nucleotide sugars by using triethylammonium acetate buffer as a ion-pairing reagent for decreasing retention.

View Article and Find Full Text PDF

Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium that causes severe infections in a number of hosts from plants to mammals. A-band lipopolysaccharide of P. aeruginosa contains d-rhamnosylated O-antigen.

View Article and Find Full Text PDF

Helicobacter pylori is a Gram-negative gastric pathogen causing diseases from mild gastric infections to gastric cancer. The difference in clinical outcome has been suggested to be due to strain differences. H.

View Article and Find Full Text PDF

Selectin-dependent cell binding has importance in the extravasation of blood-circulating tumor cells and in the generation of metastases. Cell surface glycoproteins decorated with sialylated, fucosylated epitopes, such as sialyl Lewis(x) (sLe(x)), are ligands for selectins. Not only terminal sLe(x) moieties but also proximal core structures contribute to the formation of binding epitopes for selectins.

View Article and Find Full Text PDF

Two rapid and simple procedures for the quantitative analysis of GDP-l-fucose (GDP-Fuc) are described. The methods are based on time-resolved fluorescence and microplate assay technology. The first assay relies on measuring the enzyme activity of alpha1, 3-fucosyltransferase.

View Article and Find Full Text PDF

Fucosylation of glycans on glycoproteins and -lipids requires the enzymatic activity of relevant fucosyltransferases and GDP-L-fucose as the donor. Due to the biological importance of fucosylated glycans, a readily accessible source of GDP-L-fucose would be required. Here we describe the construction of a stable recombinant S.

View Article and Find Full Text PDF

L-selectin guides lymphocytes into peripheral lymphoid tissues by recognizing glycoprotein ligands decorated with 6-sulfated sialyl Lewis x (sulfo sLex). Here we have used a rat peripheral lymph node high endothelial cell line (Ax) to study in detail the synthesis, expression and degradation of sLex epitope. We show here that Ax cells possess active alpha(1,3)fucosyltransferase Fuc-TVII, the enzyme responsible for the final fucosylation of sialyl-N-acetyllactosamine during sLex synthesis, and express sLex on the cell surface.

View Article and Find Full Text PDF

By using two different reaction pathways, we generated enzymatically three sialylated and site-specifically alpha 1-3-fucosylated polylactosamines. Two of these are isomeric hexasaccharides Neu5Ac(alpha 2-3)Gal(beta 1-4)GlcNAc(beta 1-3)Gal(beta 1-4)[Fuc(alpha 1-3)] GlcNAc and Neu5Ac(alpha 2-3)Gal(beta 1-4)[Fuc(alpha 1-3)]GlcNAc(beta 1-3)Gal(beta 1-4) GlcNAc, containing epitopes that correspond to VIM-2 and sialyl Lewis (x), respectively. The third one, nonasaccharide Neu5Ac(alpha 2-3)Gal(beta 1-4)GlcNAc(beta 1-3)Gal(beta 1-4)[Fuc(alpha 1-3)] GlcNAc(beta 1-3)Gal(beta 1-4)[Fuc(alpha 1-3)]GlcNAc, is a sialylated and internally difucosylated derivative of a trimeric N-acetyllactosamine.

View Article and Find Full Text PDF

Extravasation from the blood of malignant tumour cells that form metastasis and leukocytes that go into tissues require contact between selectins and their sialyl Lewis x and sialyl Lewis a (sLe(x) and sLe(a) respectively) decorated ligands. Endothelial cells have been shown to express sLe(x) epitopes in lymph nodes and at sites of inflammation, and this is crucial for the selectin-dependent leukocyte traffic. Besides the ability to synthesize sLe(x) on sialylated N-acetyllactosamine via the action of alpha(1,3)fucosyltransferase(s), endothelial cells can also degrade sLe(x) to Lewis x through the action of alpha(2,3)sialidase(s).

View Article and Find Full Text PDF

A novel saccharide was synthesized by incubating globo-N-tetraose, GalNAc beta1-3Gal alpha1-4Gal beta1-4Glc, and UDP[3H]GlcNAc with hog gastric mucosal microsomes, known to contain beta1,6-N-acetylglucosaminyltransferase activity of a broad acceptor specificity. Chromatography and MALDI-TOF mass spectrometry of the product, as well as the amount of incorporated radioactivity indicated that one [3H]GlcNAc residue was transferred to the acceptor saccharide. One- and two-dimensional 1H NMR-spectroscopic analysis of the product and ESI-CID mass spectrometry of the pentasaccharide in permethylated form established its structure as GalNAc beta1-3([3H]GlcNAc beta1-6)Gal alpha1-4Gal beta1-4Glc.

View Article and Find Full Text PDF

We describe here an assay that employs a highly sensitive nonradioactive method, time-resolved fluorometry, for measuring the activity of the enzyme GDP-Fuc:NeuNAcalpha2-3Galbeta1-4GlcNAc-R (Fuc to GlcNAc) alpha1,3-fucosyltransferase (alpha1,3FT). In this assay, a neoglycoprotein substrate of alpha1,3FT is immobilized on a microtiter plate. Incubation with the fucose donor GDP-fucose and enzyme source converts the acceptor NeuNAcalpha2-3Galbeta1-4GlcNAc-R to the product NeuNAcalpha2-3Galbeta1-4(Fucalpha1-3)GlcNAc-R, which is quantified using a product-specific (antisialyl Lewis x) primary antibody and europium chelate-labeled secondary antibody.

View Article and Find Full Text PDF