Ultraviolet irradiation of a cross-linked polydimethylsiloxane (PDMS) Sylgard 184 film in the presence of atmospheric oxygen (UVO) through a bare transmission electron microscope (TEM) sample holding grid is a rather simple and widely utilized technique for creating micropatterned surfaces. The surface oxidation of a Sylgard 184 film due to UVO exposure is associated with densification and the formation of a silica-like surface layer, which under a TEM grid happens only over the exposed areas of the film, resulting in a physicochemical pattern. It is known that the depth () of the features depends on the duration of UVO exposure ().
View Article and Find Full Text PDFNitrogen-doped carbon dots (NCDs), exhibiting strong yellow emission in aqueous solution and solid matrices, have been utilized for fabricating heterostructure white electroluminescence devices. These devices consist of nitrogen-doped carbon dots as an emissive layer sandwiched between an organic hole transport layer (PEDOT:PSS) and an array of rutile TiOnanorods, acting as an electron transport layer. Under an applied forward bias of 5 V, the device exhibits broadband electroluminescence covering the wavelength range of 390-900 nm, resulting in pure white light emission characteristics at room temperature.
View Article and Find Full Text PDFA liquid drop impacting on a soft surface is known to exhibit fascinating dynamics that is distinctive from its bounce-back atop a rigid surface. However, while the early spreading of the drop subsequent to its immediate impact with a lubricating liquid layer appears to be reasonably well understood, the later events of retraction and eventual stabilization appear to be poorly addressed. Here, we bring out the nontrivial confluence of the solid substrate wettability and the liquid layer viscosity toward modulating the post-collision dynamics of an impinging liquid drop on a viscous oil-infused surface during its later phase of settlement before arriving at an equilibrium state.
View Article and Find Full Text PDFWe report morphological evolution and pattern formation during evaporative drying of a droplet of polymethylmethacrylate (PMMA) dissolved in tetrahydrofuran over a soft, swellable cross-linked Sylgard 184 substrate. In contrast to the well-known coffee ring formation due to the evaporation of a polymer solution droplet over a rigid substrate, we show that the situation becomes far more complicated over a Sylgard 184 substrate due to solvent penetration and associated swelling. The combined effect of evaporation and diffusive penetration leads to significantly faster solvent loss and results in the formation of an in situ thin polymer shell over the free surface of the evaporating droplet due to the attainment of local glass-transition concentration.
View Article and Find Full Text PDFNon-close packed (NCP) colloidal arrays find wide applications in the fields of photonics, optical chip fabrication, nano sphere lithography and so on. However, unlike their close packed counterparts, such arrays cannot be obtained by direct self-organization of colloidal particles and require specialized techniques involving plasma/reactive ion etching, electric field driven assembly, substrate stretching or precise positioning of the particles. In this article, we present a facile template guided approach for fabricating ordered NCP arrays of colloidal particles.
View Article and Find Full Text PDFWhile a sticking plasteris enough for healing of most of the minor cuts they may get routinely, critical situations like surgical, gunshot, accidental or diabetic wounds;lacarations and other cutaneous deep cuts may require implants and simultaneous medications for healing. From the biophysical standpoint, an internal force-based physical surface stimulusis crucial for cellular sensing during wound repair. In this paper, the authors report the fabrication of a porous, biomimmetically patterned silk fibroin scaffold loaded with ampicillin, which exhibits controlled release of the drug along with possible replenishment of the same.
View Article and Find Full Text PDFRose petals exhibit a phenomenal wetting property of being sticky and superhydrophobic simultaneously. A recent study has shown that for short timescales, associated with drop impact phenomenon, lotus leaf and rose petal replicas exhibit similar wettability, thereby highlighting the difference between long and short time wettability. Also, short time wetting on rose petals of different colors remains completely unaddressed, as almost all existing study on wetting of rose petals have been performed with the classical red rose ().
View Article and Find Full Text PDFWe report a significant improvement of adipose-derived mesenchymal stem cells' (ADMSCs) biocompatibility and proliferation on hierarchically patterned porous honey-incorporated silk fibroin scaffolds fabricated using a combination of soft lithography and freeze-drying techniques. Parametric variations show enhanced surface roughness, swelling, and degradation rate with good pore interconnectivity, porosity, and mechanical strength for soft-lithographically fabricated biomimetic microdome arrays on the 2% honey silk fibroin scaffold (PHSF2) as compared to its other variants, which eventually made PHSF2 more comparable to the native environment required for stem cell adhesion and proliferation. PHSF2 also exhibits sustained honey release with remarkable antibacterial efficacy against methicillin-resistant (MRSA).
View Article and Find Full Text PDFLiquid-infused slippery surfaces have replaced structural superhydrophobic surfaces in a plethora of emerging applications, hallmarked by their favorable self-healing and liquid-repelling characteristics. Their ease of fabrication on different types of materials and increasing demand in various industrial applications have triggered research interests targeted toward developing an environmental-friendly, flexible, and frugal substrate as the underlying structural and functional backbone. Although many expensive polymers such as polytetrafluoroethylene have so far been used for their fabrication, these are constrained by their compromised flexibility and non-ecofriendliness due to the use of fluorine.
View Article and Find Full Text PDFHydrous fluids play a vital role in the chemical and rheological evolution of ductile, quartz-bearing continental crust, where fluid percolation pathways are controlled by grain boundary domains. In this study, widths of grain boundary domains in seven quartzite samples metamorphosed under varying crustal conditions were investigated using Atomic Force Microscopy (AFM) which allows comparatively easy, high magnification imaging and precise width measurements. It is observed that dynamic recrystallization at higher metamorphic grades is much more efficient at reducing grain boundary widths than at lower temperature conditions.
View Article and Find Full Text PDFStrategic control of evaporation dynamics can help control oscillation modes and internal flow field in an oscillating sessile droplet. This article presents the study of an oscillating droplet on a bio-inspired "sticky" surface to better understand the nexus between the modes of evaporation and oscillation. Oscillation in droplets can be characterized by the number of nodes forming on the surface and is referred to as the mode of oscillation.
View Article and Find Full Text PDFSelf-assembly of Janus particles with spatial inhomogeneous properties is of fundamental importance in diverse areas of sciences and has been extensively observed as a favorably functionalized fluidic interface or in a dilute solution. Interestingly, the unique and non-trivial role of surface wettability on oriented self-assembly of Janus particles has remained largely unexplored. Here, the exclusive role of substrate wettability in directing the orientation of amphiphilic metal-polymer Bifacial spherical Janus particles, obtained by topo-selective metal deposition on colloidal Polymestyere (PS) particles, is explored by drop casting a dilute dispersion of the Janus colloids.
View Article and Find Full Text PDFThe influence of adding nanoparticles on the ascast morphology of spin coated immiscible polystyrene/poly(methyl methacrylate) (PS/PMMA) thin films of different thickness () and composition (, volume ratio of PS to PMMA) has been explored in this article. To understand the precise effect of nanoparticle addition, the morphology of PS/PMMA thin blend films spin cast from toluene on a native oxide covered silicon wafer substrate was first investigated. It is seen that in particle free films, the generic morphology of the films remains nearly unaltered with increase in , for = 3:1 and 1:3.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
November 2020
We report potentiation of healing efficacy of alginate by value addition at its structural level. Dual crosslinked (ionically and covalently) sodium alginate hydrogel coupled with honey (HSAG) brings about an intermediate stiffness in the fabric, confers consistent swelling property and limits erratic degradation of the polymer which ultimately provides conducive milieu to cellular growth and proliferation. In this work honey concentrations in HSAGs are varied from 2% to 10%.
View Article and Find Full Text PDFAxial gradients in wall elasticity may have significant implications in the deformation and flow characteristics of a narrow fluidic conduit, bearing far-reaching consequences in physiology and bio-engineering. Here, we present a theoretical and experimental framework for fluid-structure interactions in microfluidic channels with axial gradients in wall elasticity, in an effort to arrive at a potential conceptual foundation for in vitro study of mirovascular physiology. Towards this, we bring out the static deformation and steady flow characteristics of a circular microchannel made of polydimethylsiloxane (PDMS) bulk, considering imposed gradients in the substrate elasticity.
View Article and Find Full Text PDFSlippery surfaces, inspired by the functionality of trapping interfaces of specialized leaves of pitcher plants, have been widely used in self-cleaning, anti-icing, antifrost, and self-healing surfaces. They can be fabricated on metallic surfaces as well, presenting a more durable and low-maintenance anticorrosive surface on metals. However, the lack of studies on the durability of these slippery surfaces at high temperature prohibits their practical deployment in real industrial applications where thermal effects are critical and high temperature conditions are inevitable.
View Article and Find Full Text PDFWe report the evaporative drying-mediated pattern formation of dilute aqueous NaCl solution droplets on a hydrophobic surface made of cross-linked PDMS at elevated temperatures. Experiments were performed with various salt concentrations (0.08 to 2 M).
View Article and Find Full Text PDFWe report how the texture and stability of a nematic liquid-crystal (LC) thin film of 5CB vary as a function of UV-ozone (UVO) exposure of the underlying poly(methyl methacrylate) (PMMA) substrate. UVO exposure of the PMMA substrate not only increases its surface energy, making it more wettable, but also results in the generation of oxygen-containing polar functional groups on the PMMA surface due to photolysis of ester. While the stability of the 5CB films is expectedly enhanced on UVO-exposed PMMA substrates against thermally induced dewetting, the texture of the film also changes as a function of the UV exposure time ().
View Article and Find Full Text PDFSimultaneous tuning of wettability and adhesion of a surface requires intricate procedures for altering the interfacial structures. Here, we present a simple method for preparing a stable slippery surface, with an intrinsic capability of varying its adhesion characteristics. Cross-linked PDMS, an inherent hydrophobic material commonly used for microfluidic applications, is used to replicate the structures on the surface of a rose petal which acts as a high adhesion solid base and is subsequently oleoplaned with silicone oil.
View Article and Find Full Text PDFInspired by the self-cleaning ability of lotus leaves and stickiness (towards water) of rose petals, we investigate the droplet impact dynamics on such bioinspired substrates. Impact studies are carried out with water droplets for a range of impact velocities on glass, PDMS and soft lithographically fabricated replicas of the lotus leaf and rose petals, which exhibit near identical wetting properties as that of the original biological entities. In this work, we investigate the spreading, dewetting and droplet break-up mechanisms subsequent to impact.
View Article and Find Full Text PDFAn ordered array of 1D ZnO nanorods obtained by colloidal templating is shown to dramatically enhance the sensing response of NO at room temperature by confining light and creating periodic structures. The sensitivity is measured for a concentration varying from 2 to 10 ppm (response 53% at 10 ppm) at room temperature under white light illumination with ≈225 nm hole diameter. In contrast, structures with ≈450 nm hole size show better sensing under (response 98% at 10 ppm) elevated temperatures in dark conditions, which is attributed to the increased surface chemical interactions with NO molecules due to the porous nature and enhanced accessible surface area of ZnO nanorods.
View Article and Find Full Text PDFWe report the path for a possible fabrication of an array of nanogrooves, by electro-hydrodynamic instability-mediated patterning of a thin polymer film using a patterned stamp with much larger features. Using a predictive computational model based on finite element method, we find the route to control the coalescence of initial instabilities that arise with the onset of spatially varying DC electric field generated through topographical patterns in the top electrode. These quasi-steady structures are shown to evolve with the electrostatic and geometric nature of the two-electrode system and are of a stable intermediate during the process of feature replication, under each electrode feature.
View Article and Find Full Text PDFSpin coating is a simple and rapid method for fabricating ordered monolayer colloidal crystals on flat as well as patterned substrates. In this article, we show how a combination of factors, particularly concentration of the dispensed colloidal solution ( ) and spin-coating speed, influences the ordering process. We have performed systematic experiments on different types of substrates with two types of colloidal particles (polystyrene and silica).
View Article and Find Full Text PDFWe report the development of a single-step, template-less and fast pathway, namely, Electrodynamic-Contact-Line-Lithography (ECLL), to write micro to nanopatterns on the surface of a soft polymer film. As a model system, a layer of nematic liquid crystals (NLC), resting on a polymer thin film, was sandwiched between a pair of electrodes emulating the electrowetting on a dielectric (EWOD) setup. Upon the application of electric field, the Maxwell stresses thus generated at the NLC-polymer interface due to the high dielectric contrast stimulated an unprecedented fingering instability at the advancing NLC-polymer-air contact line.
View Article and Find Full Text PDFWe report thermally induced nematic to isotropic (N-I) phase transition as well as dewetting of 5CB Liquid Crystal (LC) thin films coated on flat and topographically patterned substrates with grating geometry of different line width ( ) and periodicity ( ). On a flat substrate, the nematic to isotropic (N-I) phase transition, which takes place within a temperature range between 31.1 °C and 34.
View Article and Find Full Text PDF