Publications by authors named "Rabi Simantov"

Gene targeting approaches greatly facilitate insight into the functioning of monoamine transporters, the targets of potent antidepressants. The serotonin transporter (5-HTT) is the molecular target of a large number of antidepressants. To assess the clearance of serotonin (5-HT) in the absence of the 5-HTT, we have generated double knockout mice lacking both the 5-HTT and the catabolizing enzyme monoamine oxidase A (MAOA).

View Article and Find Full Text PDF

The concept of cell replacement to compensate for cell loss and restore functionality has entered several disease entities including neurodegenerative disorders. Recent clinical studies have shown that transplantation of fetal dopaminergic (DA) cells into the brain of Parkinson's disease (PD) patients can reduce disease-associated motor deficits. However, the use of fetal tissue is associated with practical and ethical problems including low efficiency, variability in the clinical outcome and controversy regarding the use of fetuses as donor.

View Article and Find Full Text PDF

Activation of transforming growth factor-beta (TGF-beta) receptors typically elicits mesodermal development, whereas inhibition of this pathway induces neural fates. In vitro differentiated mouse embryonic stem (ES) cells with deletion of the TGF-beta pathway-related factors Smad4 or Cripto exhibited increased numbers of neurons. Cripto-/- ES cells developed into neuroecto-/epidermal cell types, while Smad4-/- cells also displayed mesodermal differentiation.

View Article and Find Full Text PDF

In several countries, 3,4-methylenedioxymethamphetamine (MDMA) is currently the most abundant psychoactive recreational drug. MDMA induces numerous neuropsychiatric behaviors, serotonergic neuron degeneration, programmed death of cultured cells, hyperthermia and occasional fatality. Using gene expression analysis in MDMA-treated mice, we identified changes in gamma-amino butyric acid (GABA) transporters and synaptotagmins I and IV.

View Article and Find Full Text PDF

The nuclear transcription factor Nurr1 is involved in the development and maintenance of the midbrain dopaminergic (DA) neuronal phenotype. We analysed the cellular and biological effects of Nurr1 during embryonic stem (ES) cell differentiation using the ROSA26-engineered Tet-inducible ES cell line J1-rtTA that does not express transgenes in mature neurons. Induction of Nurr1 at nestin-positive precursor and later stages of ES cell differentiation produced a non-neuronal DA cell type including functional DA transporters.

View Article and Find Full Text PDF

3,4-Methylenedioxymethamphetamine (MDMA), commonly referred to as Ecstasy, is a widely abused, psychoactive recreational drug, which induces short- and long-term neuropsychiatric behaviors. This drug is neurotoxic to serotonergic neurons in vivo, and induces programmed cell death in cultured human serotonergic cells and rat neocortical neurons. Over the years it has been shown that MDMA alters the release of several neurotransmitters in the brain, it induces recompartmentation of intracellular serotonin and c-fos, and modifies the expression of a few genes.

View Article and Find Full Text PDF

Changes in gene expression were examined in the brain of mice treated with a drug of abuse, 3,4-methylenedioxymethamphetamine (MDMA, also called Ecstasy). Frontal cortex and midbrain mRNA, analyzed by differential display polymerase chain reaction (DD-PCR) method, showed an altered expression of several cDNAs, 11 of which were isolated, cloned and sequenced. The sequence of one MDMA-induced mRNA corresponds (99.

View Article and Find Full Text PDF

3,4-Methylenedioxymethamphetamine (MDMA or Ecstasy) is a widely abused drug. In brains of mice exposed to MDMA, we recently detected altered expression of several cDNAs and genes by using the differential display polymerase chain reaction (PCR) method. Expression of one such cDNA, which exhibited 98% sequence homology with the synaptic vesicle protein synaptotagmin IV, decreased 2 h after MDMA treatment.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Rabi Simantov"

  • - Rabi Simantov's research primarily investigates the molecular and neuropharmacological impacts of psychoactive substances, focusing on how drugs like MDMA (Ecstasy) affect neurotransmitter systems, particularly serotonergic and GABAergic systems, and their implications for neuropsychiatric behaviors and neurotoxicity.
  • - He has also explored innovative approaches in neurodegenerative disease therapies, emphasizing the potential of stem cell transplantation and gene targeting methods to restore dopaminergic functions in conditions like Parkinson's disease while addressing ethical and efficacy concerns.
  • - Additionally, his work on embryonic stem cell differentiation highlights the roles of transcription factors in neuronal development, particularly how modulation of pathways like TGF-beta can influence the generation of neural cell types from stem cells, offering insights into regenerative medicine.