Publications by authors named "Rabhi Mokded"

As crucial stages in the plant ontogeny, germination and seedling establishment under adverse conditions greatly determine staple crop growth and productivity. In the context of green technologies aiming to improve crop yield, seed priming is emerging as an effective approach to enhance seed vigor and germination performance under salt stress. In this study, we assess the efficiency of seed priming with indole-3-acetic acid (IAA) in mitigating the adverse effects of salt stress on maize (Zea mays L.

View Article and Find Full Text PDF

The aim of this study was to investigate whether silicon (Si) supply was able to alleviate the harmful effects caused by salinity stress on sorghum-sudangrass (Sorghum bicolor ×Sorghum sudanense ), a species of grass raised for forage and grain. Plants were grown in the presence or absence of 150mM NaCl, supplemented or not with Si (0.5mM Si).

View Article and Find Full Text PDF

Silicon (Si) is the second most abundant element in the Earth's crust after oxygen. Its beneficial impact on crop development and yield, particularly under stressful conditions such as iron (Fe) deficiency, has been well documented. Fe deficiency is a critical constraint that limits crop production globally.

View Article and Find Full Text PDF

Plants are highly sensitive to various environmental stresses, which can hinder their growth and reduce yields. In this study, we investigated the potential of seed priming with salicylic acid (SA), gibberellic acid (GA), and sodium chloride (NaCl) to mitigate the adverse effects of salinity stress in at the germination and early seedling stages. Exposing seeds to salt stress reduced the final germination percentage and seedling shoot and root growth.

View Article and Find Full Text PDF

Due to their unique physicochemical characteristics, palladium nanoparticles (Pd-NPs) have shown tremendous promise in biological applications. The biosynthesis of Pd-NPs employing Saudi propolis has been designed to be environmental, fast, controlled, and cost-effective. The formation and stability of biosynthesized Pd-NPs by Saudi propolis extract were proved by ultraviolet-visible spectrophotometry (UV-Vis), Fourier-transform infrared spectroscopy (FT-IR), and Zeta potential analysis.

View Article and Find Full Text PDF

In the present work, we used a double cell screening approach based on phenanthrene (phe) epifluorescence histochemical localization and oxygen radical detection to generate new data about how some specialized cells are involved in tolerance to organic xenobiotics. Thereby, we bring new insights about phe [a common Polycyclic Aromatic Hydrocarbon (PAH)] cell specific detoxification, in two contrasting plant lineages thriving in different ecosystems. Our data suggest that in higher plants, detoxification may occur in specialized cells such as trichomes and pavement cells in , and in the basal cells of salt glands in species.

View Article and Find Full Text PDF

Context: Ruta genus (Rutaceae) is abundantly used and described in the most ancient systematic records of medical practice of the Mediterranean world. In Tunisia, this genus is represented by two medicinal and aromatic shrubs: Ruta chalepensis L. and Ruta montana L.

View Article and Find Full Text PDF

It was shown that halophytes experience higher cross-tolerance to stresses than glycophytes, which was often associated with their more powerful antioxidant systems. Moreover, salinity was reported to enhance halophyte tolerance to several stresses. The aim of the present work was to investigate whether a moderate salinity enhances phenanthrene stress tolerance in the halophyte Thellungiella salsuginea.

View Article and Find Full Text PDF

Salinity stress reduces plant productivity, but low levels of salinity often increase plant growth rates in some species. We herein describe the effects of salinity on plant growth while focusing on nitrogen use. We treated Trifolium alexandrinum with two nitrogen concentrations and salinity levels and determined growth rates, mineral concentrations, nitrogen use efficiency, photosynthesis rates, and nitrate reductase (NR, E.

View Article and Find Full Text PDF

Vegetative bioremediation of calcareous sodic and saline-sodic soils is a biological approach for soil desalination by plants. It is based on three main processes: (i) sodium release from cation exchange sites, (ii) its leaching, and/or (iii) phytodesalination (Na(+) uptake by plant roots and its accumulation in shoots). Leaching needs sufficient rainfall and/or adequate irrigation.

View Article and Find Full Text PDF

Magnesium deficiency preferentially inhibits photosystem I rather than photosystem II in Sulla carnosa plants. The effects of magnesium (Mg(2+)) deficiency on growth, photosynthetic performance, pigment and polypeptide composition of chloroplast membranes were studied in the halophyte Sulla carnosa (Desf.), an annual legume endemic to Tunisia and Algeria.

View Article and Find Full Text PDF

In a previous study, we showed that the halophyte plant model Thellungiella salsuginea was more tolerant to phenanthrene (Polycyclic Aromatic Hydrocarbon: PAH) than its relative glycophyte Arabidopsis thaliana. In the present work, we investigated the potential of another halophyte with higher biomass production, Cakile maritma, to reduce phenanthrene phytotoxicity. Sand was used instead of arable soil with the aim to avoid pollutant degradation by microorganisms or their interaction with the plant.

View Article and Find Full Text PDF

The aim of this investigation was to evaluate the ability of the indifferent halophyte Sulla carnosa Desf. to desalinize a moderately-salt-affected soil. Seeds were sown on a fertile soil added or not with 1.

View Article and Find Full Text PDF

In the present work, we studied the effectiveness of the predominant halophytes of Soliman sabkha (Tecticornia indica and Suaeda fruticosa) to promote soil biological activities and ecosystem productivity. Soil Arylsulphatese ARY, beta-glucosidase beta-GLU, phosphatase PHO, invertase INV, urease URE, and dehydogenase DES activities in Extra- and Intra-tuft halophytes and plant productivity were assessed. Results revealed a high increase of microbial community and ARY, beta-GLU, PHO, INV URE and DES activities (+298%, +400%, +800%, +350%, +320%, +25% and +759%, respectively) in Intra-tuft rhizosphere as compared to Extra-tuft one, which is likely due to the significant decrease of salinity in the rhizosphere of Tecticornia indica and Suaeda fruticosa.

View Article and Find Full Text PDF

Dunaliella salina (Dunal) Teodor, when treated over 25 d with a wide range of NaCl salinities (0.6-4.5 M), showed its maximal growth potentialities at 1.

View Article and Find Full Text PDF

The secreting glandular trichomes are recognized as an efficient structure that alleviates salt effects on Atriplex halimus. They are found on buds, young green stems, and leaves. They occupy both the leaf surfaces and give them a whitish color.

View Article and Find Full Text PDF

Physiological and biochemical responses of Hordeum maritimum and H. vulgare to salt stress were studied over a 60-h period. Growth at increasing salinity levels (0, 100, 200 and 300 mM NaCl) was assessed in hydroponic culture.

View Article and Find Full Text PDF

Cuttings of Sesuvium portulacastrum L. (Aizoaceae) were taken from plants cultivated under severe saline conditions. The obtained seedlings were grown on sand and irrigated with nutrient solution over 5 weeks under no (0 mM NaCl), moderate (200 mM NaCl), or high (400 mM NaCl) salinity conditions.

View Article and Find Full Text PDF

In the present work, we studied the potential of the obligate halophyte, Sesuvium portulacastrum L., to desalinize an experimentally-salinized soil after the following criteria: (i) decrease in soil salinity and sodicity, (ii) plant biomass capacity to accumulate sodium ions, and (iii) phytodesalinized soil quality (equivalent to growth of a glycophytic test culture of Hordeum vulgare L.).

View Article and Find Full Text PDF

Soil degradation and salinization are two of the utmost threat affecting agricultural areas, derived from the increasing use of low quality water and inappropriate cultural practices. The problem of low productivity of saline soils may be ascribed not only to their salt toxicity or damage caused by excess amounts of soluble salts but also arising from the lack of organic matter and available mineral nutrients especially N, P, and K. Concerns about salinization risk and environmental quality and productivity of agro-ecosystems have emphasized the need to develop management practices that maintain soil resources.

View Article and Find Full Text PDF

Phytosiderophores (PS) are Fe(III)-solubilizing compounds released by Poaceae roots under iron deficiency conditions. Several studies focused on the capacity of these plants to secrete PS as a center of their iron deficiency tolerance, and little information is available on other traits such as root/shoot biomass ratios, iron use efficiency, photosynthetic activity, and iron mobilization capacity that might also contribute to iron deficiency tolerance. In this study, we evaluated some traits other than PS release capacity that could be responsible for differences in iron deficiency tolerance in two barley species, Hordeum maritimum and Hordeum vulgare.

View Article and Find Full Text PDF

The efficiency of composted municipal solid wastes (MSW) to reduce the adverse effects of salinity was investigated in Hordeum maritimum under greenhouse conditions. Plants were cultivated in pots filled with soil added with 0 and 40tha(-1) of MSW compost, and irrigated twice a week with tap water at two salinities (0 and 4gl(-1) NaCl). Harvests were achieved at 70 (shoots) and 130 (shoots and roots) days after sowing.

View Article and Find Full Text PDF

In calcareous salt-affected soils, iron availability to plants is subjected to the effects of both sodium and bicarbonate ions. Our aim was to study interactive effects of salinity and iron deficiency on iron acquisition and root acidification induced by iron deficiency in Medicago ciliaris L., a species commonly found in saline ecosystems.

View Article and Find Full Text PDF