Activin receptor‑like kinase-5 (ALK5) is an outstanding member of the transforming growth factor-β (TGF-β) family. (TGF-β) signaling pathway integrates pleiotropic proteins that regulate various cellular processes such as growth, proliferation, and differentiation. Dysregulation within the signaling pathway can cause variety of diseases, such as fibrosis, cardiovascular disease, and especially cancer, rendering ALK5 a potential drug target.
View Article and Find Full Text PDFBreast cancer (BC) still poses a threat worldwide which demands continuous efforts to present safer and efficacious treatment options via targeted therapy. Beside kinases' aberrations as Aurora B kinase which controls cell division, BC adopts distinct metabolic profiles to meet its high energy demands. Accordingly, targeting both aurora B kinase and/or metabolic vulnerability presents a promising approach to tackle BC.
View Article and Find Full Text PDFRapid cell division and reprogramming of energy metabolism are two crucial hallmarks of cancer cells. In humans, hexose trafficking into cancer cells is mainly mediated through a family of glucose transporters (GLUTs), which are facilitative transmembrane hexose transporter proteins. In several breast cancers, fructose can functionally substitute glucose as an alternative energy supply supporting rapid proliferation.
View Article and Find Full Text PDFMultidrug resistance (MDR) is a leading cause for treatment failure in cancer patients. One of the reasons of MDR is drug efflux by ATP-binding cassette (ABC) transporters in eukaryotic cells especially ABCB1 (P-glycoprotein). In this study, certain novel 1,2,5-trisubstituted benzimidazole derivatives were designed utilising ligand based pharmacophore approach.
View Article and Find Full Text PDFNovel series of pyrazolo[3,4-b]pyridines 9a-j and 14a-f were prepared via a one-pot three-component reaction. Compounds 9a-j were synthesized by the reaction of 3-(4-chlorophenyl)-1-phenyl-1H-pyrazol-5-amine (4) with benzoyl acetonitriles 3a,b and aldehydes 5a-e, whereas the spiro derivatives 14a-f were synthesized by the reaction of pyrazole derivative 4 with 3a-c and indoline-2,3-diones 10a,b. Screening of the antiproliferative activity of 9a-j and 14a-f revealed that 14a and 14d were the most potent analogues against HepG2 and HeLa cells, with IC = 4.
View Article and Find Full Text PDFA series of thieno[2,3-]pyrimidine-based hydroxamic acid hybrids was designed and synthesised as multitarget anti-cancer agents, through incorporating the pharmacophore of EGFR, VEGFR2 into the inhibitory functionality of HDAC6. Three compounds were promising hits, whereas exhibited potent VEGFR2 inhibition (IC=185 nM), potent EGFR inhibition (IC=1.14 µM), and mild HDAC6 inhibition (23% inhibition).
View Article and Find Full Text PDFVascular endothelial growth factor receptor (VEGFR) is one of the well-known targets that control angiogenesis and cancer progression. In this study, we are reporting the design, synthesis and biological evaluation of a series of 4-substituted thieno[2,3-d]pyrimidine derivatives as VEGFR-2 inhibitors. The design of these compounds was based on interactions extracted from crystal structure of potent pyrrolo[3,2-d]pyrimidine inhibitor VIII with VEGFR-2 (PDB: 3VHE).
View Article and Find Full Text PDFAntimicrobial resistance is an imminent threat worldwide. Methicillin-resistant Staphylococcus aureus (MRSA) is one of the "superbug" family, manifesting resistance through the production of a penicillin binding protein, PBP2a, an enzyme that provides its transpeptidase activity to allow cell wall biosynthesis. PBP2a's low affinity to most β-lactams, confers resistance to MRSA against numerous members of this class of antibiotics.
View Article and Find Full Text PDFPyridazine scaffolds are considered privileged structures pertaining to its novelty, chemical stability, and synthetic feasibility. In our quest towards the development of novel scaffolds for effective vascular endothelial growth 2 (VEGFR-2) inhibition with antiangiogenic activity, four novel series of pyridazines were designed and synthesised. Five of the synthesised compounds; namely ( exhibited potent VEGFR-2 inhibitory potency (>80%); with IC values ranging from low micromolar to nanomolar range; namely compounds with (1.
View Article and Find Full Text PDFCyclin Dependent Kinases CDKs unpredictable activity has been accounted for a wide assortment of human malignancies, so it might be conceivable to design pharmacologically relevant ligands that go about as specific and potent inhibitors of CDK2 action. In this respect, a series of novel pyrazolo[1,5-a][1,3,5]triazine derivatives were designed, synthesized and evaluated for CDK2 enzyme inhibitory and anticancer activity. Compounds 9f and 10c showed best CDK2 inhibition among the newly synthesized compounds, with percent inhibition at 82.
View Article and Find Full Text PDFVEGFR-2 has a pivotal role in promoting cancer angiogenesis. Herein, two series of novel indazole-based derivatives were designed, synthesized and evaluated for their in vitro inhibitory action against VEGFR-2 kinase enzyme. The second series 11a-e exhibited better potency than the first one 7a-d and 8a-f.
View Article and Find Full Text PDFVascular endothelial growth factor receptor-2 (VEGFR-2) plays a crucial role in cancer angiogenesis. In the current study, a series of novel pyrrolo[2,3-d]pyrimidine based-compounds was designed and synthesized as VEGFR-2 inhibitors, in accordance to the structure activity relationship (SAR) studies of known type II VEGFR-2 inhibitors. The newly synthesized compounds were evaluated for their ability to inhibit VEGFR-2 kinase enzyme in vitro.
View Article and Find Full Text PDFA series of novel pyranoquinolinone-based Schiff's bases were designed and synthesized. They were evaluated for topoisomerase IIβ (TOP2B) inhibitory activity, and cytotoxicity against breast cancer cell line (MCF-7) for the development of novel anticancer agents. A molecular docking study was employed to investigate their binding and functional properties as TOP2B inhibitors, using the Discovery Studio 2.
View Article and Find Full Text PDFIn light of the emergence of resistance against the currently available EGFR inhibitors, our study focuses on tackling this problem through the development of dual EGFR/HER2 inhibitors with improved enzymatic affinities. Guided by the binding mode of the marketed dual EGFR/HER2 inhibitor, Lapatinib, we proposed the design of dual EGFR/HER2 inhibitors based on the 6-phenylthieno[2,3-d]pyrimidine as a core scaffold and hinge binder. After two cycles of screening aiming to identify the optimum aniline headgroup and solubilizing group, we eventually identified 27b as a dual EGFR/HER2 inhibitor with IC values of 91.
View Article and Find Full Text PDFWith the continued rise of antibiotic resistance and reduced susceptibility to almost all front-line antibiotics, multidrug-resistant Gram-positive bacterial infections represent an incessant threat to healthcare providers. This study presents a new series of phenylthiazole compounds where two active moieties were combined into one scaffold. The antibacterial activity of the hybrid structures extended to include several clinically-relevant multi-drug resistant pathogens including methicillin-resistant and vancomycin-resistant Staphylococcus aureus, methicillin-resistant Staphylococcus epidermidis, vancomycin-resistant enterococci, cephalosporin-resistant and methicillin-resistant Streptococcus pneumoniae, and Listeria monocytogenes.
View Article and Find Full Text PDFDrug Res (Stuttg)
September 2018
Pyrrolopyrimidine derivatives represent a class of biologically active heterocyclic compounds which can serve as promising scaffolds that display remarkable biological activities, such as anti-inflammatory, antimicrobial, antiviral and anticancer. In the last few years, several pyrrolopyrimidine derivatives have been approved by the US FDA and in other countries for the treatment of different diseases or are currently in phase I/II clinical trials. Due to their inimitable antioxidant and anti-tumor properties, researchers were inspired to develop novel derivatives for the treatment of different types of cancer.
View Article and Find Full Text PDFEGFR has a key role in cell growth. Its mutation and overexpression share in epithelial malignancies and tumor growth. Quinazoline and quinoline derivatives are common anticancer intracellular inhibitors of EGFR kinase, and their optimization is an important issue for development of potent targeted anticancer agents.
View Article and Find Full Text PDFEpidermal Growth Factor Receptor (EGFR) stands out as a key player in the development of many cancers. Its dysregulation is associated with a vast number of tumors such as non-small-cell lung cancer, colon cancer, head-and-neck cancer, breast and ovarian cancer. Being implicated in the development of a number of the most lethal cancers worldwide, EGFR has long been considered as a focal target for cancer therapies, ever since the FDA approval of "Gefitinib" in 2003 and up to the last FDA approved small molecule EGFR kinase inhibitor "Osimertinib" in 2015.
View Article and Find Full Text PDFArch Pharm (Weinheim)
August 2017
Bromodomain and extra-terminal domain (BET) inhibition has emerged recently as a potential therapeutic target for the treatment of many human disorders such as atherosclerosis, inflammatory disorders, chronic obstructive pulmonary disease (COPD), some viral infections, and cancer. Since the discovery of the two potent inhibitors, I-BET762 and JQ1, different research groups have used different techniques to develop novel potent and selective inhibitors. In this review, we will be concerned with the trials that used fragment-based drug discovery (FBDD) approaches to discover or optimize BET inhibitors, also showing fragments that can be further optimized in future projects to reach novel potent BET inhibitors.
View Article and Find Full Text PDFHerein we describe the synthesis and biological evaluation of a series of novel benzothiazoles based on a diaryl urea scaffold previously reported in some allosteric chemokine receptor 2 (CXCR2) inhibitors. From a library of 41 new compounds, 17 showed significant inhibition of CXCR2, with IC values less than 10 μm and selectivity over CXCR4. Our ADMET simulations suggest favorable drug-like properties for the active compounds.
View Article and Find Full Text PDFEmploying an intramolecular cycloaddition reaction, we have developed a series of SO prodrugs with tunable release rates with half-lives ranging from minutes to days.
View Article and Find Full Text PDFPyridazines, their oxo derivatives; pyridazinone as well as fused bi- or tricyclic pyridazine containing scaffolds are key structural features of many biologically active compounds with diverse pharmacological applications, including cancer therapy. Since protein kinases play prominent role in tumor biology, the inhibition of its signaling pathway is considered an effective therapeutic option for the treatment of cancer.Based on the various advantages of pyridazines in drug design including modulation of the physico-chemical properties, improving ADME and toxicity profile as well as easy and diverse synthetic methods of access, makes them an invaluable tool for designing compounds as future drugs for targeted cancer treatment.
View Article and Find Full Text PDFOcimum is a genus of considerable importance in traditional medicine worldwide. The goal of this study was to examine the anti-acetylcholinesterase activity of Ocimum essential oils and to correlate the activity with their chemical profiles using a metabolome based GC-MS approach coupled to chemometrics. Further, molecular docking was adopted to rationalize the activity of some essential oil isolates.
View Article and Find Full Text PDFVascular endothelial growth factor receptor-2 (VEGFR-2) plays a crucial role in cancer angiogenesis. In this study, a series of novel furo[2,3-d]pyrimidine and thieno[2,3-d]pyrimidine based-derivatives were designed and synthesized as VEGFR-2 inhibitors, in accordance to the structure activity relationship (SAR) studies of known type II VEGFR-2 inhibitors. The synthesized compounds were evaluated for their ability to in vitro inhibit VEGFR-2 kinase enzyme.
View Article and Find Full Text PDFPreviously, we reported the identification of a thiazolidinedione-based adenosine monophosphate activated protein kinase (AMPK) activator, compound 1 (N-[4-({3-[(1-methylcyclohexyl)methyl]-2,4-dioxothiazolidin-5-ylidene}methyl)phenyl]-4-nitro-3-(trifluoromethyl)benzenesulfonamide), which provided a proof of concept to delineate the intricate role of AMPK in regulating oncogenic signaling pathways associated with cell proliferation and epithelial-mesenchymal transition (EMT) in cancer cells. In this study, we used 1 as a scaffold to conduct lead optimization, which generated a series of derivatives. Analysis of the antiproliferative and AMPK-activating activities of individual derivatives revealed a distinct structure-activity relationship and identified 59 (N-(3-nitrophenyl)-N'-{4-[(3-{[3,5-bis(trifluoromethyl)phenyl]methyl}-2,4-dioxothiazolidin-5-ylidene)methyl]phenyl}urea) as the optimal agent.
View Article and Find Full Text PDF