The prevalence of Clostridioides difficile PCR-ribotype (RT) 018 is low in Europe but variations are observed across countries. We report here the first RT 018-related outbreak in France that took place in 4 geriatric units (GU) in Strasbourg, France. From January to December 2017, 38 patients were diagnosed with C.
View Article and Find Full Text PDFPurpose: Obesity is linked to cognitive dysfunction in humans and rodents, and its effects can be passed on to the next generation. However, the extent of these effects is not well understood. The purpose of this study was to determine the effect of a prenatal maternal high-fat diet and an individual high-fat diet in inbred mice.
View Article and Find Full Text PDFBackground: While the genetics of obesity has been well defined, the epigenetics of obesity is poorly understood. Here, we used a genome-wide approach to identify genes with differences in both DNA methylation and expression associated with a high-fat diet in mice.
Results: We weaned genetically identical Small (SM/J) mice onto a high-fat or low-fat diet and measured their weights weekly, tested their glucose and insulin tolerance, assessed serum biomarkers, and weighed their organs at necropsy.
We investigated maternal obesity in inbred SM/J mice by assigning females to a high-fat diet or a low-fat diet at weaning, mating them to low-fat-fed males, cross-fostering the offspring to low-fat-fed SM/J nurses at birth, and weaning the offspring onto a high-fat or low-fat diet. A maternal high-fat diet exacerbated obesity in the high-fat-fed daughters, causing them to weigh more, have more fat, and have higher serum levels of leptin as adults, accompanied by dozens of gene expression changes and thousands of DNA methylation changes in their livers and hearts. Maternal diet particularly affected genes involved in RNA processing, immune response, and mitochondria.
View Article and Find Full Text PDF