In light of the associated risks, the question has been raised whether the decision to give a blood transfusion should solely be based on the hemoglobin level. As mitochondria are the final destination of oxygen transport, mitochondrial parameters are suggested to be of added value. The aims of this pilot study were to investigate the effect of a red blood cell transfusion on mitochondrial oxygenation as measured by the COMET device in chronic anemia patients and to explore the clinical usability of the COMET monitor in blood transfusion treatments, especially the feasibility of performing measurements in an outpatient setting.
View Article and Find Full Text PDFBackground: Platelets (PLTs) differ in glycolytic activity, resulting in rapid acidification of 'poor' storing PLT concentrates (PCs) in plasma, or depletion of glucose when stored in PLT additive solution (PAS). We aimed to understand why PLT glycolysis rates vary between donors and how this affects storage performance.
Study Design And Methods: Buffy coats from donors <45, 45-70 and >70 years were selected and single-donor PCs in plasma or PAS-E were prepared.
Mitochondrial dysfunction has been linked to disease progression in COVID-19 patients. This observational pilot study aimed to assess mitochondrial function in COVID-19 patients at intensive care unit (ICU) admission (T1), seven days thereafter (T2), and in healthy controls and a general anesthesia group. Measurements consisted of in vivo mitochondrial oxygenation and oxygen consumption, in vitro assessment of mitochondrial respiration in platelet-rich plasma (PRP) and peripheral blood mononuclear cells (PBMCs), and the ex vivo quantity of circulating cell-free mitochondrial DNA (mtDNA).
View Article and Find Full Text PDFMitochondrial function has been predominantly measured ex vivo. Due to isolation and preservation procedures ex vivo measurements might misrepresent in vivo mitochondrial conditions. Direct measurement of in vivo mitochondrial oxygen tension (mitoPO) and oxygen disappearance rate (ODR) with the protoporphyrin IX-triplet state lifetime technique (PpIX-TSLT) might increase our understanding of mitochondrial dysfunction in the pathophysiology of acute disease.
View Article and Find Full Text PDFHepatitis E virus (HEV) infection has emerged as a global health problem. However, no approved medication is available, and the infection biology remains largely elusive. Electron transport chain (ETC), a key component of the mitochondria, is the main site that produces ATP and reactive oxygen species (ROS).
View Article and Find Full Text PDFBackground: Hemodilution is a consequence of fluid replacement during blood loss and is limited by the individual ability to compensate for decreasing hemoglobin level. We tested the ability of a novel noninvasive method for measuring cutaneous mitochondrial PO2 (mitoPO2) to detect this threshold early.
Methods: Anesthetized and ventilated pigs were hemodynamically monitored and randomized into a hemodilution (n = 12) or a time control (TC) group (n = 14).
Viruses are solely dependent on host cells to propagate; therefore, understanding virus-host interaction is important for antiviral drug development. Since de novo nucleotide biosynthesis is essentially required for both host cell metabolism and viral replication, specific catalytic enzymes of these pathways have been explored as potential antiviral targets. In this study, we investigated the role of different enzymatic cascades of nucleotide biosynthesis in hepatitis E virus (HEV) replication.
View Article and Find Full Text PDFIntroduction: Although mitochondrial dysfunction is proposed to be involved in the pathophysiology of sepsis, conflicting results are reported. Variation in methods used to assess mitochondrial function might contribute to this controversy. A non-invasive method for monitoring mitochondrial function might help overcome this limitation.
View Article and Find Full Text PDFThe recently developed technique for measuring cutaneous mitochondrial oxygen tension (mitoPO2) by means of the Protoporphyrin IX-Triplet State Lifetime Technique (PpIX-TSLT) provides new opportunities for assessing mitochondrial function in vivo. The aims of this work were to study whether cutaneous mitochondrial measurements reflect mitochondrial status in other parts of the body and to demonstrate the feasibility of the technique for potential clinical use. The first part of this paper demonstrates a correlation between alterations in mitochondrial parameters in skin and other tissues during endotoxemia.
View Article and Find Full Text PDFAims: Hemoglobin-based oxygen carriers (HBOC) provide a potential alternative to red blood cell (RBC) transfusion. Their clinical application has been limited by adverse effects, in large part thought to be mediated by the intravascular scavenging of the vasodilator nitric oxide (NO) by cell-free plasma oxy-hemoglobin. Free hemoglobin may also cause endothelial dysfunction and platelet activation in hemolytic diseases and after transfusion of aged stored RBCs.
View Article and Find Full Text PDFPlasma hemoglobin (Hb) released during intravascular hemolysis has been associated with numerous deleterious effects that may stem from increased nitric oxide (NO) scavenging, but has also been associated with reactive oxygen species generation and platelet activation. Therapies that convert plasma oxyHb to metHb, or metHb to iron-nitrosyl Hb, could be beneficial because these species do not scavenge NO. In this study, we investigated the effects of Angeli's salt (AS; sodium α-oxyhyponitrite, Na2N2O3), a nitroxyl (HNO) and nitrite (NO2(-)) donor, on plasma Hb oxidation and formation of iron-nitrosyl Hb from metHb and on the vasoactivity of plasma Hb.
View Article and Find Full Text PDFProgress in diagnosis and treatment of mitochondrial dysfunction in chronic and acute disease could greatly benefit from techniques for monitoring of mitochondrial function in vivo. In this study we demonstrate the feasibility of in vivo respirometry in skin. Mitochondrial oxygen measurements by means of oxygen-dependent delayed fluorescence of protoporphyrin IX are shown to provide a robust basis for measurement of local oxygen disappearance rate (ODR).
View Article and Find Full Text PDFMitochondrial oxygen tension can be measured in vivo by means of oxygen-dependent quenching of delayed fluorescence of protoporphyrin IX (PpIX). Here we demonstrate that mitochondrial PO(2) (mitoPO(2)) can be measured in the skin of a rat after topical application of the PpIX precursor 5-aminolevulinic acid (ALA). Calibration of mitoPO(2) measurements was done by comparison with simultaneous measurements of the cutaneous microvascular PO(2) This was done under three different conditions: in normal skin tissue, in nonrespiration skin tissue due to the application of cyanide, and in anoxic skin tissue after the ventilation with 100% nitrogen.
View Article and Find Full Text PDFMeasurement of tissue oxygenation is a complex task and various techniques have led to a wide range of tissue PO(2) values and contradictory results. Tissue is compartmentalized in microcirculation, interstitium and intracellular space and current techniques are biased towards a certain compartment. Simultaneous oxygen measurements in various compartments might be of great benefit for our understanding of determinants of tissue oxygenation.
View Article and Find Full Text PDFBackground: Intravascular red cell hemolysis impairs nitric oxide (NO)-redox homeostasis, producing endothelial dysfunction, platelet activation, and vasculopathy. Red blood cell storage under standard conditions results in reduced integrity of the erythrocyte membrane, with formation of exocytic microvesicles or microparticles and hemolysis, which we hypothesized could impair vascular function and contribute to the putative storage lesion of banked blood.
Methods And Results: We now find that storage of human red blood cells under standard blood banking conditions results in the accumulation of cell-free and microparticle-encapsulated hemoglobin, which, despite 39 days of storage, remains in the reduced ferrous oxyhemoglobin redox state and stoichiometrically reacts with and scavenges the vasodilator NO.
Dietary nitrate, found in abundance in green vegetables, can be converted to the cytoprotective molecule nitrite by oral bacteria, suggesting that nitrate and nitrite may represent active cardioprotective constituents of the Mediterranean diet. We therefore tested the hypothesis that dietary nitrate and nitrite levels modulate tissue damage and ischemic gene expression in a mouse liver ischemia-reperfusion model. We found that stomach content, plasma, heart, and liver nitrite levels were significantly reduced after dietary nitrate and nitrite depletion and could be restored to normal levels with nitrite supplementation in water.
View Article and Find Full Text PDFAdv Drug Deliv Rev
April 2009
It has long been known that the generation of reactive oxygen species (ROS) is a major cause of injury after ischemia/reperfusion. More recently it has emerged that the predominant source of these ROS are the mitochondria, which are specifically damaged during prolonged ischemic episodes. Several strategies have been tested to attenuate mitochondrial damage and reperfusion ROS.
View Article and Find Full Text PDFBackground: Storage of red blood cells (RBCs) results in various biochemical changes, including a decrease in cellular adenosine triphosphate and 2,3-diphosphoglycerate acid. Previously it was shown that stored human RBCs show a deficit in the oxygenation of the microcirculation in the gut of anesthetized rats. In this study, the effect of RBCs on rat kidney oxygenation and the effect of rejuvenation of stored RBCs on their ability to deliver oxygen were investigated.
View Article and Find Full Text PDFThe anion nitrite (NO(2)(-)) constitutes a biochemical reservoir for nitric oxide (NO). Nitrite reduction to NO may be catalyzed by hemoglobin, myoglobin or other metal-containing enzymes and occurs at increasing rates under conditions of physiologic hypoxia or ischemia. A number of laboratories have now demonstrated in animal models the ability of nitrite to provide potent cytoprotection following focal ischemia-reperfusion (IR) injury of the heart, liver, brain, and kidney.
View Article and Find Full Text PDFTissue oxygen delivery depends on red blood cell (RBC) content and RBC flow regulation in the microcirculation. The important role of the RBC in tissue oxygenation is clear from anaemia and the use of RBC transfusion which has saved many lives. Whether RBC transfusion actually restores tissue oxygenation is difficult to determine due to the lack of appropriate clinical monitoring techniques.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
November 2006
Accumulating evidence suggests that the simple and ubiquitous anion salt, nitrite (NO(2)(-)), is a physiological signaling molecule with potential roles in intravascular endocrine nitric oxide (NO) transport, hypoxic vasodilation, signaling, and cytoprotection after ischemia-reperfusion. Human and animal studies of nitrite treatment and NO gas inhalation provide evidence that nitrite mediates many of the systemic therapeutic effects of NO gas inhalation, including peripheral vasodilation and prevention of ischemia-reperfusion-mediated tissue infarction. With regard to nitrite-dependent hypoxic signaling, biochemical and physiological studies suggest that hemoglobin possesses an allosterically regulated nitrite reductase activity that reduces nitrite to NO along the physiological oxygen gradient, potentially contributing to hypoxic vasodilation.
View Article and Find Full Text PDFIntroduction: Septic renal failure is often seen in the intensive care unit but its pathogenesis is only partly understood. This study, performed in a normotensive rat model of endotoxemia, tests the hypotheses that endotoxemia impairs renal microvascular PO2 (microPO2) and oxygen consumption (VO2,ren), that endotoxemia is associated with a diminished kidney function, that fluid resuscitation can restore microPO2, VO2,ren and kidney function, and that colloids are more effective than crystalloids.
Methods: Male Wistar rats received a one-hour intravenous infusion of lipopolysaccharide, followed by resuscitation with HES130/0.
In the past decade, studies suggesting a reduced oxygen delivery by stored red blood cell concentrates (RBCCs) have initiated a discussion about the use of fresh versus old blood. We determined whether old RBCCs represent a significant part of the total of RBCCs issued. The age of RBCCs at the time of transfusion was determined in 74 084 units during a 5-year period in the Academic Medical Center, a main Dutch University Hospital.
View Article and Find Full Text PDF