Publications by authors named "Raashi Vijay"

The capillary module (CM), consisting of parallel capillaries from terminal arteriole to post-capillary venule, is classically considered to be the building block of complex capillary networks. In skeletal muscle, CMs form interconnected columns spanning thousands of microns, which we recently described as the capillary fascicle. However, detailed evaluation of CM haemodynamics has not been described, and may provide insight into mechanisms of blood flow regulation in the microcirculation.

View Article and Find Full Text PDF

Key Points: The capillary module, consisting of parallel capillaries from arteriole to venule, is classically considered as the building block of complex capillary networks. In skeletal muscle, this structure fails to address how blood flow is regulated along the entire length of the synchronously contracting muscle fibres. Using intravital video microscopy of resting extensor digitorum longus muscle in rats, we demonstrated the capillary fascicle as a series of interconnected modules forming continuous columns that align naturally with the dimensions of the muscle fascicle.

View Article and Find Full Text PDF

For future application to studying regulation of microvascular oxygen delivery, a model is developed for O transport within an idealized volume of tissue, that is perfused by a continuous distribution of capillaries. Considering oxygen diffusion, convection, and consumption, an O-dependent transfer term between the capillaries and tissue is used to extend previous single-compartment approaches to include separate tissue and capillary compartments. The coupled tissue-capillary PDE system is considered for unidirectional capillary flow in z, as a simplified model of O transport in skeletal muscle, and steady-state 2D solutions are obtained using boundary conditions in x that are consistent with two experimental situations of interest.

View Article and Find Full Text PDF