Publications by authors named "Raaka B"

Obesity-induced white adipose tissue (WAT) inflammation and insulin resistance are associated with macrophage (Mф) infiltration and phenotypic shift from "anti-inflammatory" M2-like to predominantly "proinflammatory" M1-like cells. Erythropoietin (EPO), a glycoprotein hormone indispensable for erythropoiesis, has biological activities that extend to nonerythroid tissues, including antiapoptotic and anti-inflammatory effects. Using comprehensive in vivo and in vitro analyses in mice, EPO treatment inhibited WAT inflammation, normalized insulin sensitivity, and reduced glucose intolerance.

View Article and Find Full Text PDF

Thyrotropin-releasing hormone receptor type 2 (TRH-R2), not TRH-R1, has been proposed to mediate the CNS effects of TRH and its more effective analog taltirelin (TAL). Consistent with this idea, TAL exhibited higher binding affinity and signaling potency at mouse TRH-R2 than TRH-R1 in a model cell system. We used TRH-R1 knockout (R1ko), R2ko and R1/R2ko mice to determine which receptor mediates the CNS effects of TAL.

View Article and Find Full Text PDF

Taltirelin (TAL) is a thyrotropin-releasing hormone (TRH) analog that is approved for use in humans in Japan. In this study, we characterized TAL binding to and signaling by the human TRH receptor (TRH-R) in a model cell system. We found that TAL exhibited lower binding affinities than TRH and lower signaling potency via the inositol-1,4,5-trisphosphate/calcium pathway than TRH.

View Article and Find Full Text PDF

Background: Fibroblasts (FIBs) within the retro-orbital space of patients with Graves' disease (GOFs) express thyrotropin receptors (TSHRs) and are thought to be an orbital target of TSHR-stimulating autoantibodies in Graves' ophthalmopathy (GO). Recently, we developed a low molecular weight, drug-like TSHR antagonist (NCGC00229600) that inhibited TSHR activation in a model cell system overexpressing TSHRs and in normal human thyrocytes expressing endogenous TSHRs. Herein, we test the hypothesis that NCGC00229600 will inhibit activation of TSHRs endogenously expressed in GOFs.

View Article and Find Full Text PDF

Perilipin family proteins (Plins) coat the surface of intracellular neutral lipid storage droplets in various cell types. Studies across diverse species demonstrate that Plins regulate lipid storage metabolism through recruitment of lipases and other regulatory proteins to lipid droplet surfaces. Mammalian genomes have distinct Plin gene members and additional protein forms derived from specific mRNA splice variants.

View Article and Find Full Text PDF

Receptors for thyrotropin-releasing hormone (TRH) and thyrotropin (thyroid-stimulating hormone-TSH) are important regulators of the function of the TSH-producing cells of the anterior pituitary gland and the thyroid gland, respectively, and thereby play a central role in thyroid hormone homeostasis. Although the roles of TRH- and TSH-stimulated signaling in these endocrine glands are well understood, these receptors are expressed in other sites and their roles in these extraglandular tissues are less well known. Moreover, one of the two subtypes of TRH receptors (TRH-R2) and the single TSH receptor (TSHR) exhibit constitutive signaling activity and the roles of constitutive signaling by these receptors are poorly understood.

View Article and Find Full Text PDF

The biologic role of thyroid-stimulating hormone (TSH; thyrotropin) as an activator (agonist) of the TSH receptor (TSHR) in the hypothalamic-pituitary-thyroid axis is well known and activation of TSHR by recombinant human TSH is used clinically in patients with thyroid cancer. TSHR ligands other than TSH could be used to probe TSHR biology in thyroidal and extrathyroidal tissues, and potentially be employed in patients. A number of different TSHR ligands have been reported, including TSH analogs, antibodies and small-molecule, drug-like compounds.

View Article and Find Full Text PDF

We previously characterized human islet-derived precursor cells (hIPCs) as a specific type of mesenchymal stem cell capable of differentiating to insulin (INS)- and glucagon (GCG)-expressing cells. However, during proliferative expansion, INS transcript becomes undetectable and then cannot be induced, a phenomenon consistent with silencing of the INS gene. We explored this possibility by determining whether ectopic expression of transcription factors known to induce transcription of this gene in beta cells, pancreatic and duodenal homeobox factor 1 (Pdx1), V-maf musculoaponeurotic fibrosarcoma oncogene homolog A (Mafa), and neurogenic differentiation 1 (Neurod1), would activate INS gene expression in long-term hIPC cultures.

View Article and Find Full Text PDF

Seven-transmembrane-spanning receptors (7TMRs) are prominent drug targets. However, small-molecule ligands for 7-transmembrane-spanning receptors for which the natural ligands are large, heterodimeric glycoprotein hormones, like thyroid-stimulating hormone (TSH; thyrotropin), have only recently been reported, and none are approved for human use. We have used quantitative high-throughput screening to identify a small-molecule TSH receptor (TSHR) agonist that was modified to produce a second agonist with increased potency.

View Article and Find Full Text PDF

Thyrotropin-releasing hormone (TRH) is a neuropeptide that initiates its effects in mice by interacting with two G-protein-coupled receptors, TRH receptor type 1 (TRH-R1) and TRH receptor type 2 (TRH-R2). Two previous reports described the effects of deleting TRH-R1 in mice. TRH-R1 knockout mice exhibit hypothyroidism, hyperglycemia, and increased depression and anxiety-like behavior.

View Article and Find Full Text PDF

Objectives: Thyrotropin-releasing hormone (TRH) is expressed in rodent and human adult pancreata and in mouse pancreas during embryonic development. However, expression of TRH receptors (TRHRs) in the pancreas is controversial. We sought to provide evidence that the TRH/TRHR system might play a role in fetal development.

View Article and Find Full Text PDF

Low-molecular-weight (LMW) antagonists for TSH receptor (TSHR) may have therapeutic potential as orally active drugs to block stimulating antibodies (TsAbs) in Graves' hyperthyroidism. We describe an approach to identify LMW ligands for TSHR based on Org41841, a LMW partial agonist for the LH/choriogonadotropin receptor and TSHR. We used molecular modeling and functional experiments to guide the chemical modification of Org41841.

View Article and Find Full Text PDF

Objectives: Previously, we characterized human islet-derived precursor cells (hIPCs) as mesenchymal stem cells that migrate out from islets in vitro and can differentiate into functional islet-like structures following proliferative expansion. Here, we investigate the role of beta-catenin signalling in derivation and proliferation of hIPCs.

Materials And Methods: Localization of beta-catenin was performed using confocal microscopy.

View Article and Find Full Text PDF

The mechanisms governing transition of the thyroid stimulating hormone (TSH) receptor (TSHR) from basal to active conformations are poorly understood. Considering that constitutively activating mutations (CAMs) and inactivating mutations in each of the extracellular loops (ECLs) trigger only partial TSHR activation or inactivation, respectively, we hypothesized that full signaling occurs via multiple extracellular signal propagation events. Therefore, individual CAMs in the extracellular region were combined to create double and triple mutants.

View Article and Find Full Text PDF

The G-protein-coupled receptor free fatty acid receptor 1 (FFAR1), previously named GPR40, is a possible novel target for the treatment of type 2 diabetes. In an attempt to identify new ligands for this receptor, we performed virtual screening (VS) based on two-dimensional (2D) similarity, three-dimensional (3D) pharmacophore searches, and docking studies by using the structure of known agonists and our model of the ligand binding site, which was validated by mutagenesis. VS of a database of 2.

View Article and Find Full Text PDF

Multiple computational methods have been employed in a comparative study of thyrotropin-releasing hormone receptors 1 and 2 (TRH-R1 and TRH-R2) to explore the structural bases for the different functional properties of these G protein-coupled receptors. Three-dimensional models of both murine TRH receptors have been built and optimized by means of homology modeling based on the crystal structure of bovine rhodopsin, molecular dynamics simulations, and energy minimizations in a membrane-aqueous environment. The comparison between the two models showed a correlation between the higher flexibility and higher basal activity of TRH-R2 versus the lesser flexibility and lower basal activity of TRH-R1 and supported the involvement of the highly conserved W6.

View Article and Find Full Text PDF
Article Synopsis
  • Islet transplantation improves blood sugar control in diabetics, but it's limited by the availability of donor pancreases.
  • Human islet-derived precursor cells (hIPCs) can be expanded and differentiated to create a large number of insulin-producing cells.
  • The study found that hIPCs can become functional cells producing insulin and other hormones after transplantation into mice, making them a potential rich source for diabetes treatment.
View Article and Find Full Text PDF

Human islet-derived precursor cells (hIPCs), mesenchymal cells derived in vitro from adult pancreas, proliferate freely and do not express insulin but can be differentiated to epithelial cells that express insulin. hIPCs have been studied with the goal of obtaining large quantities of insulin-producing cells suitable for transplantation into patients suffering from type 1 diabetes. It appeared that undifferentiated hIPCs are "committed" to a pancreatic endocrine phenotype through multiple cell divisions, suggesting that epigenetic modifications at the insulin locus could be responsible.

View Article and Find Full Text PDF

GPR40 was formerly an orphan G protein-coupled receptor whose endogenous ligands have recently been identified as free fatty acids (FFAs). The receptor, now named FFA receptor 1, has been implicated in the pathophysiology of type 2 diabetes and is a drug target because of its role in FFA-mediated enhancement of glucose-stimulated insulin release. Guided by molecular modeling, we investigated the molecular determinants contributing to binding of linoleic acid, a C18 polyunsaturated FFA, and GW9508, a synthetic small molecule agonist.

View Article and Find Full Text PDF

GPR40, free fatty acid receptor 1 (FFAR1), is a member of the GPCR superfamily and a possible target for the treatment of type 2 diabetes. In this work, we conducted a bidirectional iterative investigation, including computational modeling and site-directed mutagenesis, aimed at delineating amino acid residues forming the functional "chemoprint" of GPR40 for agonist recognition. The computational and experimental studies revolved around the recognition of the potent synthetic agonist GW9508.

View Article and Find Full Text PDF

We previously presented evidence that proliferative human islet precursor cells may be derived in vitro from adult islets by epithelial-to-mesenchymal transition (EMT) and show here that similar fibroblast-like cells can be derived from mouse islets. These mouse cell populations exhibited changes in gene expression consistent with EMT. Both C-peptide and insulin mRNAs were undetectable in expanded cultures of mouse islet-derived precursor cells (mIPCs).

View Article and Find Full Text PDF

Insulin-like growth factor binding protein-3 (IGFBP-3), a secreted protein, has the intrinsic ability to induce apoptosis directly without binding insulin-like growth factors. Previous studies suggested that IGFBP-3 must be secreted to exert its biological functions. IGFBP-3 contains a nuclear localization signal (NLS), and exogenous IGFBP-3 is translocated into the nucleus, suggesting that both secretion and nuclear localization may play important roles in IGFBP-3 action.

View Article and Find Full Text PDF

The substituted thieno[2,3-d]pyrimidine 3 (Org 41841), a partial agonist for the luteinizing hormone/choriogonadotropin receptor (LHCGR) and the closely related thyroid-stimulating hormone receptor (TSHR), was fundamentally altered, and the resulting analogues were analyzed for their potencies, efficacies, and specificities at LHCGR and TSHR. Chemical modification of the parent compound combined with prior mutagenesis of TSHR provided compelling experimental evidence in support of computational models of 3 binding to TSHR and LHCGR within their transmembrane cores. Biochemical analysis of a specific modification to the chemical structure of 3 provides additional evidence of a H-bond between the ligand and a glutamate residue in transmembrane helix 3, which is conserved in both receptors.

View Article and Find Full Text PDF

Many cognate low molecular weight (LMW) agonists bind to seven transmembrane-spanning receptors within their transmembrane helices (TMHs). The thienopyrimidine org41841 was identified previously as an agonist for the luteinizing hormone/chorionic gonadotropin receptor (LHCGR) and suggested to bind within its TMHs because it did not compete for LH binding to the LHCGR ectodomain. Because of its high homology with LHCGR, we predicted that thyroid-stimulating hormone receptor (TSHR) might be activated by org41841 also.

View Article and Find Full Text PDF

We studied the role of carboxyl tail cysteine residues and their palmitoylation in constitutive signaling by the thyrotropin-releasing hormone (TRH) receptor type 1 (TRH-R1) in transfected mammalian cells and in Xenopus laevis oocytes. To study palmitoylation, we inserted a factor Xa cleavage site within the third extracellular loop of TRH-R1, added a carboxyl-terminal C9 immunotag and expressed the mutant receptor in Chinese hamster ovary cells. We identified TRH-R1-specific palmitoylation in the transmembrane helix-7/carboxyl-tail receptor fragment mainly at Cys-335 and Cys-337.

View Article and Find Full Text PDF